共查询到20条相似文献,搜索用时 0 毫秒
1.
Marta Orlando Anton Dvorzhak Felicitas Bruentgens Marta Maglione Benjamin R. Rost Stephan J. Sigrist Jrg Breustedt Dietmar Schmitz 《PLoS biology》2021,19(6)
Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.This study uses several high-resolution imaging techniques to investigate the structural correlates of presynaptic potentiation at hippocampal mossy fiber boutons, observing an increase in release sites and in release synchronicity accompanied by synaptic vesicle dispersion in the terminal and accumulation at release sites, but no modulation of the distance between calcium channel and release sites. 相似文献
2.
Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons 总被引:3,自引:0,他引:3
Action potentials in central neurons are initiated near the axon initial segment, propagate into the axon, and finally invade the presynaptic terminals, where they trigger transmitter release. Voltage-gated Na(+) channels are key determinants of excitability, but Na(+) channel density and properties in axons and presynaptic terminals of cortical neurons have not been examined yet. In hippocampal mossy fiber boutons, which emerge from parent axons en passant, Na(+) channels are very abundant, with an estimated number of approximately 2000 channels per bouton. Presynaptic Na(+) channels show faster inactivation kinetics than somatic channels, suggesting differences between subcellular compartments of the same cell. Computational analysis of action potential propagation in axon-multibouton structures reveals that Na(+) channels in boutons preferentially amplify the presynaptic action potential and enhance Ca(2+) inflow, whereas Na(+) channels in axons control the reliability and speed of propagation. Thus, presynaptic and axonal Na(+) channels contribute differentially to mossy fiber synaptic transmission. 相似文献
3.
Ca(2+) influx and opening of Ca(2+)-activated K(+) channels in muscle fibers from control and mdx mice 下载免费PDF全文
Using the patch-clamp technique, we demonstrate that, in depolarized cell-attached patches from mouse skeletal muscle fibers, a short hyperpolarization to resting value is followed by a transient activation of Ca(2+)-activated K(+) channels (K(Ca)) upon return to depolarized levels. These results indicate that sparse sites of passive Ca(2+) influx at resting potentials are responsible for a subsarcolemmal Ca(2+) load high enough to induce K(Ca) channel activation upon muscle activation. We then investigate this phenomenon in mdx dystrophin-deficient muscle fibers, in which an elevated Ca(2+) influx and a subsequent subsarcolemmal Ca(2+) overload are suspected. The number of Ca(2+) entry sites detected with K(Ca) was found to be greater in mdx muscle. K(Ca) activity reflecting subsarcolemmal Ca(2+) load was also found to be independent of the activity of leak channels carrying inward currents at negative potentials in mdx muscle. These results indicate that the sites of passive Ca(2+) influx newly described in this study could represent the Ca(2+) influx pathways responsible for the subsarcolemmal Ca(2+) overload in mdx muscle fibers. 相似文献
4.
Wellman GC Santana LF Bonev AD Nelson MT 《American journal of physiology. Cell physiology》2001,281(3):C1029-C1037
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR)Ca2+-ATPase, and this inhibition is relieved bycAMP-dependent protein kinase (PKA)-mediated phosphorylation. The roleof PLB in regulating Ca2+ release throughryanodine-sensitive Ca2+ release channels, measured asCa2+ sparks, was examined using smooth muscle cells ofcerebral arteries from PLB-deficient ("knockout") mice(PLB-KO). Ca2+ sparks were monitored opticallyusing the fluorescent Ca2+ indicator fluo 3 or electricallyby measuring transient large-conductance Ca2+-activatedK+ (BK) channel currents activated by Ca2+sparks. Basal Ca2+ spark and transient BK current frequencywere elevated in cerebral artery myocytes of PLB-KO mice. Forskolin, anactivator of adenylyl cyclase, increased the frequency ofCa2+ sparks and transient BK currents in cerebral arteriesfrom control mice. However, forskolin had little effect on thefrequency of Ca2+ sparks and transient BK currents fromPLB-KO cerebral arteries. Forskolin or PLB-KO increased SRCa2+ load, as measured by caffeine-induced Ca2+transients. This study provides the first evidence that PLB is criticalfor frequency modulation of Ca2+ sparks and associated BKcurrents by PKA in smooth muscle. 相似文献
5.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function. 相似文献
6.
Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels 总被引:1,自引:0,他引:1
Syme CA Gerlach AC Singh AK Devor DC 《American journal of physiology. Cell physiology》2000,278(3):C570-C581
We previouslycharacterized 1-ethyl-2-benzimidazolinone (1-EBIO), as well as theclinically useful benzoxazoles, chlorzoxazone (CZ), and zoxazolamine(ZOX), as pharmacological activators of the intermediate-conductanceCa2+-activated K+ channel, hIK1. The mechanismof activation of hIK1, as well as the highly homologoussmall-conductance, Ca2+-dependent K+ channel,rSK2, was determined following heterologous expression inXenopus oocytes using two-electrode voltage clamp (TEVC) and excised, inside-out patch-clamp techniques. 1-EBIO, CZ, and ZOX activated both hIK1 and rSK2 in TEVC and excised inside-out patch-clamp experiments. In excised, inside-out patches, 1-EBIO and CZ induced aconcentration-dependent activation of hIK1, with half-maximal (K1/2) values of 84 µM and 98 µM, respectively.Similarly, CZ activated rSK2 with a K1/2 of 87 µM. In the absence of CZ, the Ca2+-dependent activationof hIK1 was best fit with a K1/2 of 700 nM and aHill coefficient (n) of 2.0. rSK2 was activated byCa2+ with a K1/2 of 700 nM and ann of 2.5. Addition of CZ had no effect on either theK1/2 or n for Ca2+-dependentactivation of either hIK1 or rSK2. Rather, CZ increased channelactivity at all Ca2+ concentrations(Vmax). Event-duration analysis revealed hIK1 wasminimally described by two open and three closed times. Activation by1-EBIO had no effect on o1, o2, orc1, whereas c2 and c3 werereduced from 9.0 and 92.6 ms to 5.0 and 44.1 ms, respectively. Inconclusion, we define 1-EBIO, CZ, and ZOX as the first known activatorsof hIK1 and rSK2. Openers of IK and SK channels may be therapeuticallybeneficial in cystic fibrosis and vascular diseases. 相似文献
7.
High-conductanceCa2+-activatedK+(KCa) channels werestudied in mouse skeletal muscle fibers using thepatch-clamp technique. In inside-out patches, application of negativepressure to the patch induced a dose-dependent and reversibleactivation of KCa channels.Stretch-induced increase in channel activity was found to be of thesame magnitude in the presence and in the absence ofCa2+ in the pipette. Thedose-response relationships betweenKCa channel activity andintracellular Ca2+ and betweenKCa channel activity and membranepotential revealed that voltage andCa2+ sensitivity were not alteredby membrane stretch. In cell-attached patches, in the presence of highexternal Ca2+ concentration,stretch-induced activation was also observed. We conclude that membranestretch is a potential mode of regulation of skeletal muscleKCa channel activity and could beinvolved in the regulation of muscle excitability duringcontraction-relaxation cycles. 相似文献
8.
Coupling strength between localized Ca(2+) transients and K(+) channels is regulated by protein kinase C 总被引:1,自引:0,他引:1
Bayguinov O Hagen B Kenyon JL Sanders KM 《American journal of physiology. Cell physiology》2001,281(5):C1512-C1523
Localized Ca2+ transients resulting from inositoltrisphosphate (IP3)-dependent Ca2+ releasecouple to spontaneous transient outward currents (STOCs) in murinecolonic myocytes. Confocal microscopy and whole cell patch-clamptechniques were used to investigate coupling between localizedCa2+ transients and STOCs. Colonic myocytes were loadedwith fluo 3. Reduction in external Ca2+([Ca2+]o) reduced localized Ca2+transients but increased STOC amplitude and frequency. Simultaneous recordings of Ca2+ transients and STOCs showed increasedcoupling strength between Ca2+ transients and STOCs when[Ca2+]o was reduced. Gd3+ (10 µM) did not affect Ca2+ transients but increased STOCamplitude and frequency. Similarly, an inhibitor of Ca2+influx,1-2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole (SKF-96365), increased STOC amplitude and frequency. A protein kinase C(PKC) inhibitor, GF-109203X, also increased the amplitude and frequencyof STOCs but had no effect on Ca2+ transients. Phorbol12-myristate 13-acetate (1 µM) reduced STOC amplitude and frequencybut did not affect Ca2+ transients. 4-Phorbol (1 µM)had no effect on STOCs or Ca2+ transients. Single channelstudies indicated that large-conductance Ca2+-activatedK+ (BK) channels were inhibited by aCa2+-dependent PKC. In summary 1)Ca2+ release from IP3 receptor-operated storesactivates Ca2+-activated K+ channels;2) Ca2+ influx through nonselective cationchannels facilitates activation of PKC; and 3) PKC reducesthe Ca2+ sensitivity of BK channels, reducing the couplingstrength between localized Ca2+ transients and BK channels. 相似文献
9.
Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses 总被引:12,自引:0,他引:12
Kainate receptors (KARs) are a poorly understood family of ionotropic glutamate receptors. A role for these receptors in the presynaptic control of transmitter release has been proposed but remains controversial. Here, KAR agonists are shown to enhance fiber excitability, and a number of experiments show that this is a direct effect of KARs on the presynaptic fibers. In addition, KAR activation inhibits evoked transmitter release from mossy fiber synapses. Synaptic release of glutamate from either neighboring mossy fiber synapses or associational/commisural (A/C) synapses results in the activation of these presynaptic ionotropic KARs. These results, along with previous studies, indicate that KARs, through the endogenous release of glutamate, mediate excitatory postsynaptic potentials (EPSPs), alter presynaptic excitability, and modulate transmitter release. 相似文献
10.
Brzezinska AK Gebremedhin D Chilian WM Kalyanaraman B Elliott SJ 《American journal of physiology. Heart and circulatory physiology》2000,278(6):H1883-H1890
Peroxynitrite (ONOO(-)) is a contractile agonist of rat middle cerebral arteries. To determine the mechanism responsible for this component of ONOO(-) bioactivity, the present study examined the effect of ONOO(-) on ionic current and channel activity in rat cerebral arteries. Whole cell recordings of voltage-clamped cells were made under conditions designed to optimize K(+) current. The effects of iberiotoxin, a selective inhibitor of large-conductance Ca(2+)-activated K(+) (BK) channels, and ONOO(-) (10-100 microM) were determined. At a pipette potential of +50 mV, ONOO(-) inhibited 39% of iberiotoxin-sensitive current. ONOO(-) was selective for iberiotoxin-sensitive current, whereas decomposed ONOO(-) had no effect. In excised, inside-out membrane patches, channel activity was recorded using symmetrical K(+) solutions. Unitary currents were sensitive to increases in internal Ca(2+) concentration, consistent with activity due to BK channels. Internal ONOO(-) dose dependently inhibited channel activity by decreasing open probability and mean open times. The inhibitory effect of ONOO(-) could be overcome by reduced glutathione. Glutathione, added after ONOO(-), restored whole cell current amplitude to control levels and reverted single-channel gating to control behavior. The inhibitory effect of ONOO(-) on membrane K(+) current is consistent with its contractile effects in isolated cerebral arteries and single myocytes. Taken together, our data suggest that ONOO(-) has the potential to alter cerebral vascular tone by inhibiting BK channel activity. 相似文献
11.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP. 相似文献
12.
Wallace DP Tomich JM Eppler JW Iwamoto T Grantham JJ Sullivan LP 《Biochimica et biophysica acta》2000,1464(1):69-82
A synthetic Cl(-) channel-forming peptide, C-K4-M2GlyR, applied to the apical membrane of human epithelial cell monolayers induces transepithelial Cl(-) and fluid secretion. The sequence of the core peptide, M2GlyR, corresponds to the second membrane-spanning region of the glycine receptor, a domain thought to line the pore of the ligand-gated Cl(-) channel. Using a pharmacological approach, we show that the flux of Cl(-) through the artificial Cl(-) channel can be regulated by modulating basolateral K(+) efflux through Ca(2+)-dependent K(+) channels. Application of C-K4-M2GlyR to the apical surface of monolayers composed of human colonic cells of the T84 cell line generated a sustained increase in short-circuit current (I(SC)) and caused net fluid secretion. The current was inhibited by the application of clotrimazole, a non-specific inhibitor of K(+) channels, and charybdotoxin, a potent inhibitor of Ca(2+)-dependent K(+) channels. Direct activation of these channels with 1-ethyl-2-benzimidazolinone (1-EBIO) greatly amplified the Cl(-) secretory current induced by C-K4-M2GlyR. The effect of the combination of C-K4-M2GlyR and 1-EBIO on I(SC) was significantly greater than the sum of the individual effects of the two compounds and was independent of cAMP. Treatment with 1-EBIO also increased the magnitude of fluid secretion induced by the peptide. The cooperative action of C-K4-M2GlyR and 1-EBIO on I(SC) was attenuated by Cl(-) transport inhibitors, by removing Cl(-) from the bathing solution and by basolateral treatment with K(+) channel blockers. These results indicate that apical membrane insertion of Cl(-) channel-forming peptides such as C-K4-M2GlyR and direct activation of basolateral K(+) channels with benzimidazolones may coordinate the apical Cl(-) conductance and the basolateral K(+) conductance, thereby providing a pharmacological approach to modulating Cl(-) and fluid secretion by human epithelia deficient in cystic fibrosis transmembrane conductance regulator Cl(-) channels. 相似文献
13.
The activation of BK type Ca(2+)-activated K(+) channels depends on both voltage and Ca(2+). We studied three point mutations in the putative voltage sensor S4 or S4-S5 linker regions in the mslo1 BK channels to explore the relationship between voltage and Ca(2+) in activating the channel. These mutations reduced the steepness of the open probability - voltage (P(o) - V) relation and increased the shift of the P(o) - V relations on the voltage axis in response to increases in the calcium concentration. It is striking that these two effects were reciprocally related for all three mutations, despite different effects of the mutations on other aspects of the voltage dependence of channel gating. This reciprocal relationship suggests strongly that the free energy contributions to channel activation provided by voltage and by calcium binding are simply additive. We conclude that the Ca(2+) binding sites and the voltage sensors do not directly interact. Rather they both affect the mslo1 channel opening through an allosteric mechanism, by influencing the conformational change between the closed and open conformations. The mutations changed the channel's voltage dependence with little effect on its Ca(2+) affinitiy. 相似文献
14.
15.
ZhuGe R Fogarty KE Tuft RA Lifshitz LM Sayar K Walsh JV 《The Journal of general physiology》2000,116(6):845-864
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca(2+) indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca(2+) released into the cytosol, and its rate of rise is proportional to the Ca(2+) current flowing through the RyRs during a spark (I(Ca(spark))). Thus, Ca(2+) currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of I(Ca(spark)) in different sparks varies more than fivefold, Ca(2+) sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca(2+) current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca(2+)] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca(2+) concentration resulting from the measured range of I(Ca(spark)). At the onset of a spark, the Ca(2+) concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca(2+)](EC50) for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca(2+)] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca(2+) action on a variety of molecular targets within cellular microdomains. 相似文献
16.
Campos-Bedolla P Vargas MH Segura P Carbajal V Calixto E Figueroa A Flores-Soto E Barajas-López C Mendoza-Patiño N Montaño LM 《Life sciences》2008,83(11-12):438-446
AIMS: Although 5-hydroxytryptamine (5-HT) contracts airway smooth muscle in many mammalian species, in guinea pig and human airways 5-HT causes a contraction followed by relaxation. This study explored potential mechanisms involved in the relaxation induced by 5-HT. MAIN METHODS: Using organ baths, patch clamp, and intracellular Ca(2+) measurement techniques, the effect of 5-HT on guinea pig airway smooth muscle was studied. KEY FINDINGS: A wide range of 5-HT concentrations caused a biphasic response of tracheal rings. Response to 32 muM 5-HT was notably reduced by either tropisetron or methiothepin, and almost abolished by their combination. Incubation with 10 nM ketanserin significantly prevented the relaxing phase. Likewise, incubation with 100 nM charybdotoxin or 320 nM iberiotoxin and at less extent with 10 muM ouabain caused a significant reduction of the relaxing phase induced by 5-HT. Propranolol, L-NAME and 5-HT(1A), 5-HT(1B)/5-HT(1D) and 5-HT(2B) receptors antagonist did not modify this relaxation. Tracheas from sensitized animals displayed reduced relaxation as compared with controls. In tracheas precontracted with histamine, a concentration response curve to 5-HT (32, 100 and 320 muM) induced relaxation and this effect was abolished by charybdotoxin, iberiotoxin or ketanserin. In single myocytes, 5-HT in the presence of 3 mM 4-AP notably increased the K(+) currents (I(K(Ca))), and they were completely abolished by charybdotoxin, iberiotoxin or ketanserin. SIGNIFICANCE: During the relaxation induced by 5-HT two major mechanisms seem to be involved: stimulation of the Na(+)/K(+)-ATPase pump, and increasing activity of the high-conductance Ca(2+)-activated K(+) channels, probably via 5-HT(2A) receptors. 相似文献
17.
18.
We examined the ionic mechanisms underlying the responses of canine trachealis to superoxide (generated in vitro by using xanthine oxidase or added exogenously) and peroxide (generated spontaneously in vitro by the dismutation of superoxide or added exogenously). Although neither had any effect on resting tone, both triggered relaxations in carbachol-precontracted tissues. These relaxations were eliminated by catalase but were much less sensitive to the hydroxyl radical scavenger dimethylthiourea, indicating they were mediated primarily by peroxide. These relaxations were decreased in magnitude and/or slowed by nifedipine (10(-6) M), ouabain (10(-6) M), or tetraethylammonium (25 mM), but not by 4-aminopyridine (5 mM), and were small or absent in tissues precontracted with 30 mM KCl. Finally, peroxide triggered membrane hyperpolarization and elevated cytosolic concentration of Ca(2+) (primarily via release from the internal store). Thus peroxide-mediated relaxations seem to involve Ca(2+) release, opening of Ca(2+)-dependent K(+) channels, hyperpolarization, closure of Ca(2+) channels, and relaxation. In addition, some other free radical (hydroxyl radical?) may activate the Na(+)-K(+) pump, also hyperpolarizing the membrane and causing relaxation. 相似文献
19.
Rat brain hypothalami were exposed to various depolarizing stimuli and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) release was measured by means of a radioimmunoassay (RIA) procedure. Under conditions of noradrenergic blockade, exposure to high K(+) (40-100 mM) produced dose-dependent increases in the VIP-LI release in a Ca(2+)-dependent manner. Exposure to veratridine (3-100 microM) also induced concentration-dependent increases in VIP-LI release, an effect that was Ca(2+)-dependent and tetrodotoxin (TTX)-sensitive. Specific ligands for the L, N, and P/Q-type voltage-operated Ca(2+) channels (VOCCs) were used to determine which channel subtypes were involved in the K(+)-evoked VIP-LI release. The L-type VOCC ligand, nifedipine (10 microM), had no effect on release. In contrast, the N-type VOCC blocker, omega-conotoxin GVIA (omega-CgTx GVIA) (0.1-100 nM), markedly reduced the K(+)-evoked response, with maximal inhibition of approximately 60+/-8%. omega-Agatoxin IVA (omega-Aga IVA) (1-50 nM), which binds P-type and, at high doses, also Q-type VOCCs, produced dose-dependent inhibition of up to 25+/-3%, while the maximal inhibition observed with the non-selective VOCCs ligand, omega-conotoxin MVIIC (omega-CmTx MVIIC) (1 nM-3 microM), amounted to 85+/-8%. These findings indicate that N and P-type Ca(2+) channels play predominant roles in the high K(+)-evoked release of VIP-LI from the rat hypothalamus. 相似文献
20.
K A Pedersen R L Schr?der B Skaaning-Jensen D Str?baek S P Olesen P Christophersen 《Biochimica et biophysica acta》1999,1420(1-2):231-240
Modulation of the cloned human intermediate-conductance Ca(2+)-activated K(+) channel (hIK) by the compound 1-ethyl-2-benzimidazolinone (EBIO) was studied by patch-clamp technique using human embryonic kidney cells (HEK 293) stably expressing the hIK channels. In whole-cell studies, intracellular concentrations of free Ca(2+) were systematically varied, by buffering the pipette solutions. In voltage-clamp, the hIK specific currents increased gradually from 0 to approximately 300 pA/pF without reaching saturation even at the highest Ca(2+) concentration tested (300 nM). In the presence of EBIO (100 microM), the Ca(2+)-activation curve was shifted leftwards, and maximal currents were attained at 100 nM Ca(2+). In current-clamp, steeply Ca(2+)-dependent membrane potentials were recorded and the cells gradually hyperpolarised from -20 to -85 mV when Ca(2+) was augmented from 0 to 300 nM. EBIO strongly hyperpolarised cells buffered at intermediate Ca(2+) concentrations. In contrast, no effects were detected either below 10 nM (no basic channel activation) or at 300 nM Ca(2+) (V(m) close to E(K)). Without Ca(2+), EBIO-induced hyperpolarisations were not obtainable, indicating an obligatory Ca(2+)-dependent mechanism of action. When applied to inside-out patches, EBIO exerted a Ca(2+)-dependent increase in the single-channel open-state probability, showing that the compound modulates hIK channels by a direct action on the alpha-subunit or on a closely associated protein. In conclusion, EBIO activates hIK channels in whole-cell and inside-out patches by a direct mechanism, which requires the presence of internal Ca(2+). 相似文献