首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T regulatory-1 cells induce IgG4 production by B cells: role of IL-10   总被引:2,自引:0,他引:2  
The study was aimed to find out whether T cells with a regulatory profile could regulate the secretion of IgG4. Using tetanus Ag we found that PBMC of healthy human donors responded to exogenous IL-10 by down-regulating IgG1 and increasing IgG4 secretion. IgE was not affected. To investigate the direct effect of IL-10-producing T cells on B cells, we generated T cell clones (TCC) with two different cytokine profiles: first, IL-10high, IL-2low, IL-4low TCC, and second, IL-10low, IL-2high, IL-4high. The T cell-dependent Ab secretion was measured by coculturing purified CD19+ B cells and the TCC. Interestingly, we found that IgG4 production in the coculture correlated with the TCC production of IL-10 (r2 = 0.352, p = 0.0001), but not with IL-2, IL-4, nor IFN-gamma. IgE showed only a trend with regard to IL-4. Further, there was decreased Ab secretion in the absence of T-B cell contact. IL-10 also induced IgG4 when added to a Th1 TCC-B cell coculture system. The present study thus shows that in T-B cell coculture, IL-10, if induced by the TCC or added to the system, down-regulates the immune response by inducing IgG4 secretion. This establishes a direct implication of IL-10 in humoral hyporesponsiveness, particularly in compartments where the T-B cell interplay determines the subsequent immune response. The correlation between IgG4 and IL-10 (r2 = 0.352) indicates that IL-10 is an important but not the only factor for IgG4 induction.  相似文献   

3.
It has been reported that IL-27 specifically induces the production of IgG2a by mouse B cells and inhibits IL-4-induced IgG1 synthesis. Here, we show that human na?ve cord blood expresses a functional IL-27 receptor, consisting of the TCCR and gp130 subunits, although at lower levels as compared to na?ve and memory splenic B cells. IL-27 does not induce proliferative responses and does not increase IgG1 production by CD19(+)CD27(+) memory B cells. However, it induces a low, but significant production of IgG1 by na?ve CD19(+)CD27(-)IgD(+)IgG(-) spleen and cord blood B cells, activated via CD40, whereas it has no effect on the production of the other IgG subclasses. In addition, IL-27 induces the differentiation of a population of B cells that express high levels of CD38, in association with a down-regulation of surface IgD expression, and that are surface IgG(+/int), CD20(low), CD27(high), indicating that IL-27 promotes isotype switching and plasma cell differentiation of naive B cells. However, as compared to the effects of IL-21 and IL-10, both switch factors for human IgG1 and IgG3, those of IL-27 are modest and regulate exclusively the production of IgG1. Finally, although IL-27 has no effect on IL-4 and anti-CD40-induced Cepsilon germline promoter activity, it up-regulates IL-4-induced IgE production by naive B cells. These results point to a partial redundancy of switch factors regulating the production of IgG1 in humans, and furthermore indicate the existence of a common regulation of the human IgG1and murine IgG2a isotypes by IL-27.  相似文献   

4.
rIFN-gamma strikingly enhances the secretion of IgG2a by murine splenic B cells stimulated with bacterial LPS in vitro and concomitantly suppresses the production of IgG3, IgG1, IgG2b, and IgE while sparing IgM secretion. IFN-gamma stimulates highly purified B cell populations to secrete IgG2a, strongly suggesting that it acts directly on B cells. It increases the frequency of precursors of IgG2a-expressing soft agar colonies and enhances the number of IgG2a+ cells in colonies indicating that it both increases the frequency of precursors of IgG2a+ cells and enhances the number of IgG2a+ daughter cells emerging from each precursor. IFN-gamma completes its action within the first 24 to 48 h of a 6-day culture with LPS and its addition cannot be delayed beyond the first 48 h. Preincubation of resting B cells in the presence of IFN-gamma leads to a time dependent increase, up to 42 h, in IgG2a secretion upon subsequent addition of LPS. IFN-gamma can exert this action on resting B cells that have been selected for absence of membrane IgG expression by cell sorting. The promotion of IgG2a secretion appears to be a specific property of IFN-gamma in that IFN-alpha, IFN-beta, IL-1, IL-2, IL-3, IL-4, IL-5, granulocyte-macrophage-CSF, granulocyte-CSF, and CSF-1 fail to enhance IgG2a secretion by LPS-stimulated B cells.  相似文献   

5.
Although IL-4 and IFN-gamma often have opposite effects and suppress each other's production by T cells, IL-4 can stimulate IFN-gamma production. To characterize this, we injected mice with IL-4 and quantified IFN-gamma production with the in vivo cytokine capture assay. IL-4 induced Stat6-dependent IFN-gamma production by NK and, to a lesser extent, NKT cells, but not conventional T cells, in 2-4 h. Increased IFN-gamma production persisted at a constant rate for >24 h, but eventually declined, even with continuing IL-4 stimulation. This eventual decline in IFN-gamma production was accompanied by a decrease in NK and T cell numbers. Consistent with a dominant role for NK cells in IL-4-stimulated IFN-gamma secretion, IL-4 induction of IFN-gamma was B and T cell-independent; suppressed by an anti-IL-2Rbeta mAb that eliminates most NK and NKT cells; reduced in Stat4-deficient mice, which have decreased numbers of NK cells; and absent in Rag2/gamma(c)-double-deficient mice, which lack T, B, and NK cells. IL-4-induced IFN-gamma production was not affected by neutralizing IL-12p40 and was increased by neutralizing IL-2. IL-13, which signals through the type 2 IL-4R and mimics many IL-4 effects, failed to stimulate IFN-gamma production and, in most experiments, suppressed basal IFN-gamma production. Thus, IL-4, acting through the type 1 IL-4R, induces Stat6-dependent IFN-gamma secretion by NK and NKT cells. This explains how IL-4 can contribute to Th1 cytokine-associated immune effector functions and suggests how IL-13 can have stronger proallergic effects than IL-4.  相似文献   

6.
A functional IL-13R involves at least two cell surface proteins, the IL-13R alpha 1 and IL-4R alpha. Using a soluble form of the murine IL-13R alpha 1 (sIL-13R), we reveal several novel features of this system. The sIL-13R promotes proliferation and augmentation of Ag-specific IgM, IgG2a, and IgG2b production by murine germinal center (GC) B cells in vitro. These effects were enhanced by CD40 signaling and were not inhibited by an anti-IL4R alpha mAb, a result suggesting other ligands. In GC cell cultures, sIL-13R also promoted IL-6 production, and interestingly, sIL-13R-induced IgG2a and IgG2b augmentation was absent in GC cells isolated from IL-6-deficient mice. Furthermore, the effects of the sIL-13R molecule were inhibited in the presence of an anti-IL-13 mAb, and preincubation of GC cells with IL-13 enhanced the sIL-13R-mediated effects. When sIL-13R was injected into mice, it served as an adjuvant-promoting production to varying degrees of IgM and IgG isotypes. We thus propose that IL-13R alpha 1 is a molecule involved in B cell differentiation, using a mechanism that may involve regulation of IL-6-responsive elements. Taken together, our data reveal previously unknown activities as well as suggest that the ligand for the sIL-13R might be a component of the IL-13R complex or a counterstructure yet to be defined.  相似文献   

7.
The ability of a specific antigen (Ag) to stimulate B cells to produce IL-2 was examined with a murine B lymphoma line, A20-HL, which expressed surface IgM specific for trinitrophenyl (TNP). The culture supernatant of A20-HL cells stimulated with TNP3.9-ovalbumin (-OVA) or anti-IgM goat IgG contained an activity which supported the proliferation of an IL-2-dependent T cell line, CTLL-2. Neither TNP3.9-OVA nor anti-IgM antibody stimulated the parent line, A20.2J, which did not bear TNP-specific sIg, whereas anti-mouse Ig rabbit IgG F(ab)2 did stimulate both A20-HL cells and A20.2J cells. The active material in the culture supernatant was identified as IL-2 based on the experiments in which the activity was inhibited by anti-IL-2 mAb, and IL-2 mRNA was expressed in A20-HL cells stimulated with TNP3.9-OVA or anti-IgM antibody. These results support the conclusion that a specific Ag can stimulate A20-HL cells to produce IL-2. For IL-2 production, TNP receptors on A20-HL cells have to be appropriately cross-linked, inasmuch as either TNP3.9-OVA or TNP6.7-OVA was much more effective than TNP1.2-OVA and TNP22.9-OVA in the induction of IL-2 production by A20-HL cells.  相似文献   

8.
Mouse splenic dendritic cells (DCs) produce IFN-gamma in response to IL-12. In the present study, we analyzed effects of Th1 and Th2 cytokines on IFN-gamma production by DCs. IL-18 produced by DCs and macrophages acts in an autocrine manner and augments IL-12-induced IFN-gamma production by DCs as also observed in T and NK cells. Surprisingly, IL-4, a Th2 cytokine, also acts synergistically with IL-12 on IFN-gamma production by DCs. In addition, IL-4 markedly enhances IFN-gamma production when DCs are stimulated through CD40 or MHC class II. These results indicate that both Th1 and Th2 cytokines act on DCs during T cell-DC interaction upon Ag presentation. p38 mitogen-activated protein kinase is constitutively activated in mature DCs and is required for IFN-gamma production by DCs. IL-18 but not IL-4 or IL-12 further activates the p38 mitogen-activated protein kinase activity, suggesting that IL-4 and IL-18 enhance IFN-gamma production through distinct intracellular signal transduction pathways in DCs.  相似文献   

9.
Suppression by IL-2 of IgE production by B cells stimulated by IL-4.   总被引:2,自引:0,他引:2  
IgE production was obtained from B cells of BALB/c or nude mice when these cells were cultured with IL-4 plus LPS. IL-2 added to these cultures at the start (day 0), 1 or 2 days later completely suppressed the production of IgE. The production of IgG1 was also inhibited, but only if IL-2 was added on day 0. The production of other isotypes (IgM, IgG2a, IgG2b) was only slightly decreased by addition of IL-2. No suppression of IgE or IgG1 production was observed if monoclonal anti-IL-2 was added, whereas anti-IFN-gamma had no effect on the suppression of the production of these isotypes. The expression of CD23 on the third day of culture on B cells stimulated with LPS and IL-4 was markedly decreased when IL-2 was added to the cultures on day 0. Addition of monoclonal anti-IL-2 suppressed all effects produced by IL-2, whereas addition of anti-IFN-gamma had no effect. These results show that the suppression by IL-2, at least for the first signaling processes, are different from the suppression produced by IFN-gamma.  相似文献   

10.
Induction of IgG2a class switching in B cells by IL-27   总被引:8,自引:0,他引:8  
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation. However, its role in B cells remains unexplored. We here show a role for IL-27 in the induction of T-bet expression and regulation of Ig class switching in B cells. Expression of WSX-1, one subunit of IL-27R, was detected at the mRNA level in primary mouse spleen B cells, and stimulation of these B cells by IL-27 rapidly activated STAT1. IL-27 then induced T-bet expression and IgG2a, but not IgG1, class switching in B cells activated with anti-CD40 or LPS. In contrast, IL-27 inhibited IgG1 class switching induced by IL-4 in activated B cells. Similar induction of STAT1 activation, T-bet expression and IgG2a class switching was observed in IFN-gamma-deficient B cells, but not in STAT1-deficient ones. The induction of IgG2a class switching was abolished in T-bet-deficient B cells activated with LPS. These results suggest that primary spleen B cells express functional IL-27R and that the stimulation of these B cells by IL-27 induces T-bet expression and IgG2a, but not IgG1, class switching in a STAT1-dependent but IFN-gamma-independent manner. The IL-27-induced IgG2a class switching is highly dependent on T-bet in response to T-independent stimuli such as LPS. Thus, IL-27 may be a novel attractive candidate as a therapeutic agent against diseases such as allergic disorders by not only regulating Th1 differentiation but also directly acting on B cells and inducing IgG2a class switching.  相似文献   

11.
12.
13.
IL-4 promotes IgG1 and IgE secretion by murine B cells stimulated with bacterial LPS. We show that stimulation of unprimed resting splenic B cells with LPS and 10(4) U/ml rIL-4 results in the expression of membrane (m) IgG1 and mIgE on 40 to 50% and 15 to 25% of the total B cell population, respectively, on day 4 of culture. The possibility of a significant contribution to cell surface staining by cytophilic, secreted Ig isotypes was eliminated by either the addition of anti-Fc gamma or anti-Fc epsilon R mAb during the culture or by acid treatment before staining. A similar proportion of IgE-expressing B cells are also found, after stimulation with LPS and 10(4) U/ml IL-4, by cytoplasmic staining using fluorescence microscopy. Cell sorting analysis further indicates that B cell populations that express mIgG1 and mIgE secrete these respective Ig isotypes. In addition, such cells show striking diminution in IgM secretion compared to mIgG1- or mIgE- sorted B cells. Stimulation with LPS and IL-4 (10(4) U/ml) induces co-expression of mIgG1 and mIgE on LPS-stimulated B cells; up to 75% of mIgE+ B cells co-express mIgG1 and up to 19% of mIgG1+ B cells express mIgE. This striking co-expression of mIgG1 and mIgE is mirrored by the co-expression of mIgG1 with mIgG3 and mIgG2b by B cells stimulated with LPS and 200 U/ml IL-4. Cell sorting analysis demonstrates that the B cell population that co-expresses mIgG1 and mIgE secretes both IgG1 and IgE. However, "two-color" cytoplasmic staining fails to demonstrate any B cells that simultaneously secrete both IgG1 and IgE.  相似文献   

14.
Peritoneal cells from highly susceptible BALB/c mice were infected with Leishmania major and cultured for various times in vitro. The culture supernatants contained significant levels of IL-1 which were consistently higher than those in the cell cultures stimulated with an optimal concentration of LPS. This finding extends to a macrophage cell line, P388D1, and peritoneal exudate cells stimulated with starch in vivo. However, the level of IL-1 produced was significantly reduced when the cells were preincubated with a lymphokine preparation (supernatant of Con A-stimulated rat spleen cells). The level of IL-1 produced seems to be directly correlated with the degree of parasitization of the macrophages. A similar and dose-dependent reduction in IL-1 production by infected macrophages could also be obtained when the cells were preincubated with IFN-gamma. This finding is in direct contrast to that of visceral leishmaniasis in which peritoneal macrophages from BALB/c mice infected with Leishmania donovani not only fail to produce IL-1 but also lose the capacity to produce IL-1. This apparent discrepancy is discussed in terms of a possible difference in the induction of cell-mediated immunity between the two leishmanial diseases.  相似文献   

15.
Seven T cell clones were established from mixed leukocyte cultures in which PBMC from two healthy donors and from one patient suffering from the hyper-IgE syndrome were stimulated by the irradiated EBV-transformed B cell lines JY or UD53. Five of seven T cell clones, after activation by co-cultivation with JY or UD53 cells, induced a low degree of IgE production by normal blood B cells. In one experiment in which the normal B cells could activate the T cell clones directly, IgE production was also observed in the absence of the specific stimulator cells. IgE production was also obtained with supernatants of the T cell clones collected 4 to 5 days after activation by their specific stimulator cells. In addition, the supernatants induced IgG, IgA, and IgM synthesis. All seven clones produced variable concentrations of IL-4 and IFN-gamma. The clones FA-28 and BG-39, which failed to induce IgE synthesis, produced, compared with the other clones tested, relatively high quantities of IFN-gamma (4700 and 2500 pg/ml, respectively). These high levels of IFN-gamma accounted for the lack of induction of IgE synthesis, because in the presence of a polyclonal anti-IFN-gamma antiserum, supernatants of FA-10 and BG-39 induced significant IgE production. In addition, the low degree of IgE production induced by supernatants of two other T cell clones (FA28 and BG24) was 15- and 3-fold enhanced, respectively, in the presence of the anti-IFN-gamma antiserum. IgE synthesis by normal B cells was also induced by rIL-4, indicating that IL-4 present in T cell clone supernatants was responsible for induction of IgE production. This notion was supported by the finding that IgE production induced by supernatant of BG-24 was strongly inhibited by a polyclonal anti-IL-4 antiserum. In contrast, IgG and IgA production induced by supernatant of BG-24 were not significantly affected by the anti-IL-4 antiserum. Only a slight inhibition of IgM synthesis was observed. Collectively, our results indicate that both recombinant and naturally produced IL-4 induce normal human B cells to synthesize IgE. However, final IgE production induced by T cell clone supernatants is the net result of the inducing and suppressive effects of IL-4 and IFN-gamma respectively, that are secreted simultaneously by the T cell clones upon activation.  相似文献   

16.
IL-1 induces IL-1. III. Specific inhibition of IL-1 production by IFN-gamma   总被引:6,自引:0,他引:6  
IL-1 possesses several biologic properties, some of which are associated with chronic inflammatory diseases. We have recently shown that IL-1 induces its own gene expression and, in the present studies, we have examined the effect of IFN-gamma on IL-1-induced IL-1 production. Whereas IFN-gamma increases the total amount of IL-1 (extracellular and cell-associated) produced after endotoxin stimulation of human PBMC, in the same cultures, IL-1-induced IL-1 production was markedly (greater than 70%) reduced in the presence of IFN-gamma. We observed this inhibition in the PBMC from over 40 human donors by employing non-cross-reacting RIA for either IL-1 beta or IL-1 alpha. IFN-gamma inhibited IL-1 beta-induced IL-1 alpha as well as IL-1 alpha-induced IL-1 beta production; furthermore, this inhibitory effect of IFN-gamma was unaffected by indomethacin. The ability of 100 U/ml of IFN-gamma to inhibit IL-1-induced IL-1 production was comparable to that accomplished by 10(-7) M dexamethasone. In contrast to its effect on IL-1 production from PBMC, IFN-gamma had no effect on the proliferative responses of T cells to IL-1. We conclude that IFN-gamma down-regulates synthesis of total IL-1-induced IL-1 production but up-regulates endotoxin-induced IL-1 production. These studies may explain the ameliorating effects of IFN-gamma in experimental models of IL-1-induced bone and cartilage degradation, in peritoneal fibrosis, and in patients with diseases associated with increased IL-1 production.  相似文献   

17.
Aside from being the precursors of the Ab-secreting cells, B cells are engaged in other immune functions such as Ag presentation to T cells or cytokine production. These functions may contribute to the pathogenic role of B cells in a wide range of autoimmune diseases. We demonstrate that B cells acquire the capacity to amplify IFN-gamma production by CD4 and CD8 T cells during the course of the Th1 inflammatory response to Toxoplasma gondii infection. Using the two following different strategies, we observed that B cells from T. gondii-infected mice, but not from naive mice, induce higher IFN-gamma expression by splenic host T cells: 1) reconstitution of B cell-deficient mice with B cells expressing an alloantigen different from the recipients, and 2) adoptive transfer of B and T cells into RAG-/- mice. In vitro assays allowing the physical separation of T and B cells demonstrate that Ag-primed B cells enhance IFN-gamma production by T cells in a contact-dependent fashion. Using an OVA-transgenic strain of T. gondii and OVA-specific CD4 T cells, we observed that the proinflammatory effect of B cells is neither Ag specific nor requires MHCII expression. However, TNF-alpha expressed on the surface of B cells appears to mediate in part the up-regulation of IFN-gamma by the effector T cells.  相似文献   

18.
IFN-gamma is a pleiotropic lymphokine that influences the isotypes of immunoglobulin secreted by B cells. IFN-gamma inhibits the secretion of IgG3, IgG2b, IgG1, and IgE, and enhances the secretion of IgG2a. We have examined the mechanism of IFN-gamma-mediated enhancement of IgG2a secretion in sorted populations of B cells and find that IFN-gamma reproducibly stimulates a twofold increase in the precursor frequency of IgG2a-secreting cells in the sIgG2a+ population. Additionally, we find that IFN-gamma does not induce an increase in the clone size of IgG2a-secreting cells. IFN-gamma stimulates a twofold increase in the precursor frequency of IgG2a-secreting cells from sIgG- and unsorted B cells which can be attributed to an increase in IgG2a secretion from IgG2a-committed cells in these populations. Hence, under the culture conditions utilized in these studies. IFN-gamma enhances IgG2a secretion from IgG2a-committed cells and does not induce a class switch.  相似文献   

19.
TL1A, a recently described TNF-like cytokine that interacts with DR3, costimulates T cells and augments anti-CD3 plus anti-CD28 IFN-gamma production. In the current study we show that TL1A or an agonistic anti-DR3 mAb synergize with IL-12/IL-18 to augment IFN-gamma production in human peripheral blood T cells and NK cells. TL1A also enhanced IFN-gamma production by IL-12/IL-18 stimulated CD56(+) T cells. When expressed as fold change, the synergistic effect of TL1A on cytokine-induced IFN-gamma production was more pronounced on CD4(+) and CD8(+) T cells than on CD56(+) T cells or NK cells. Intracellular cytokine staining showed that TL1A significantly enhanced both the percentage and the mean fluorescence intensity of IFN-gamma-producing T cells in response to IL-12/IL-18. The combination of IL-12 and IL-18 markedly up-regulated DR3 expression in NK cells, whereas it had minimal effect in T cells. Our data suggest that TL1A/DR3 pathway plays an important role in the augmentation of cytokine-induced IFN-gamma production in T cells and that DR3 expression is differentially regulated by IL-12/IL-18 in T cells and NK cells.  相似文献   

20.
In this study two new in vitro effects of IFN-gamma on human umbilical vein endothelial (HUVE) cells were described. First, it was shown that the expression of the adhesion molecule ELAM-1 on activated HUVE cells can be modulated by IFN-gamma. ELAM-1 is normally not expressed by HUVE cells, but its expression can rapidly be induced by TNF, IL-1, or LPS. Maximal expression is reached after 4 to 6 h of activation, and after 24 h the expression disappeared. Whereas IFN-gamma per se did not induce expression of ELAM-1, it enhanced and prolonged the expression of ELAM-1. This enhancement occurred when IFN-gamma was added before activation as well as when added simultaneously with activation. When IFN-gamma was added 6 or 9 h after the activation, the normally ongoing reduction of expression was not only retarded, but the expression increased for at least 3 h. Moreover, IFN-gamma abrogated the refractory period for restimulation. Neither IFN-beta nor IL-6 had any effect on the expression of ELAM-1. The second effect of IFN-gamma on HUVE cells is the capacity to enhance the IL-6 production by these cells. Prestimulation as well as coincubation of IFN-gamma with TNF, IL-1, or LPS resulted in a strongly augmented production of IL-6. The effects of IFN-gamma may in vivo play a role in the regulation of an inflammatory reaction, because ELAM-1 is an adhesion molecule for neutrophils, and IL-6 has an enhancing effect on the cytotoxicity of neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号