首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Koppenol's rejection (Biophys. Chem. 18 (1983) 203) of a model of polarity-dependent ferrocytochrome c oxidation (M. Fragata and F. Bellemare, Biophys. Chem. 15 (1982) 111) places emphasis on the role of the protein surface charges in reactivity but is at the same time too restrictive as it neglects largely the polarity (dielectric constant) of the aqueous and hydrophobic interfaces of the exposed heme edge and the inner cleft (heme crevice) of cytochrome c which appear to be the oxidation-reduction sites. It is suggested that a more general model should take into account (i) a recognition (or diffusion) step where the distance travelled by cytochrome c at the membrane surface and/or the Brownian displacements in the bulk solution are greatly influenced by ionic strength, and (ii) a redox step where low polarity effects prevail with concomitant weakening of ionic activity.  相似文献   

3.
 The effects of the ionic atmosphere on the enthalpic and entropic contributions to the reduction potential of native (state III) beef heart cytochrome c have been determined through variable-temperature direct electrochemistry experiments. At neutral or slightly alkaline pH values, from 5 to 50  °C, the reduction enthalpy and entropy become less negative with decreasing ionic strength. The reduction entropy extrapolated at null ionic strength is approximately zero, indicating that, in the absence of the screening effects of the salt ions on the network of the electrostatic interactions at the protein-solvent interface, the solvation properties and the conformational flexibility of the two redox states are comparable. The moderate decrease in E°′ observed with increasing ionic strength [ΔE°′IS =(E°′) I =0.1 M–(E°′) I =0 M=–0.035 V at 25  °C], once the compensating enthalpic and entropic effects of the salt-induced changes in the hydrogen bonding within the hydration sphere of the molecule in the two redox states are factorized out, results in being ultimately determined by the stabilizing enthalpic effect of the negatively charged ionic atmosphere on the ferri form. At pH 9, the ionic strength dependence of the reduction termodynamics of cytochrome c follows distinctive patterns, possibly as a result of specific binding of the hydroxide ion to the protein. A decrease in ionic strength at constant pH, as well as a pH increase at constant ionic strength, induces a depression of the temperature of the transition from the low-T to high-T conformer of cytochrome c, which suggests that a temperature-induced decrease in the pK a for a residue deprotonation is the key event of this conformational change. Received: 7 April 1999 / Accepted: 19 July 1999  相似文献   

4.
Dielectric measurements in the MHz region of bacteriorhodopsin (bR) in aqueous solution have shown the existence of 1-dispersion with five distinct parts. This dispersion and the -dispersion at low frequencies conform approximately to the Debye relaxation equations. The derived apparent relaxation times showed dependence on various physical parameters. The relaxation effect at low frequencies is attributed to the reorientation of bR chromophore within the purple membrane (PM) fragments. The mechanism which gives rise to the 1-dispersion may well be due to the Maxwell-Wagner effect, although the first two parts of the dispersion could also be attributed to counterion relaxation or to bR reorientation.  相似文献   

5.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

6.
We describe a new procedure whereby the magnitude of the dielectric dispersion of a solution of globular protein molecules can be calculated. The protein molecule is considered to have spherical symmetry and the charged residues are thought to be situated in a medium whose dielectric constant increases continuously as a function of the distance from the centre of mass. The dipole moment of the protein in the solution is made up of two parts: the intrinsic dipole moment due to the charge distribution of the protein and the dipole moment due to polarization of the medium and the ionic cloud. When the model is applied to solutions of cytochrome c it is found that polarization of the medium results in a decrease in the dielectric dispersion amplitude. The mean square dipole moment calculated with the help of this method indicates that the fluctuation of the configurations cannot be responsible for the large dispersion in the megahertz region.  相似文献   

7.
B C Hill  C Greenwood 《FEBS letters》1984,166(2):362-366
The reaction with O2 of equimolar mixtures of cytochrome c and cytochrome c oxidase in high and low ionic strength buffers has been examined by flow-flash spectrophotometry at room temperature. In low ionic strength media where cytochrome c and the oxidase are bound in an electrostatic, 1:1 complex some of the cytochrome c is oxidised at a faster rate than a metal centre of the oxidase. In contrast, when cytochrome c and cytochrome c oxidase are predominantly dissociated at high ionic strength cytochrome c oxidation occurs only slowly (t1/2 = 5 s) following the complete oxidation of the oxidase. These results demonstrate that maximal rates of electron transfer from cytochrome c to O2 occur when both substrates are present on the enzyme. The heterogeneous oxidation of cytochrome c observed in the complex implies more than one route for electron transfer within the enzyme. Possibilities for new electron transfer pathways from cytochrome c to O2 are proposed.  相似文献   

8.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

9.
M S Tung  R J Molinari  R H Cole  J H Gibbs 《Biopolymers》1977,16(12):2653-2669
The dielectric properties of DNA solutions at low frequencies (5 Hz to 2 kHz) have been measured by means of a four-terminal bridge method utilized to minimize electrode polarization errors. At 24°C native salt-free DNA has a very large specific dielectric increment, Δε/c = 9.8 × 106 l/mol and a very low frequency relaxation centered at 18 Hz. Both the dielectric increment and the relaxation time are greatly decreased by partial heat denaturation at temperatures above 60°C or by addition of salt, the effects being much larger for divalent anions. These results are shown to be in qualitative agreement with theoretical treatments of counterion fluctuation polarization by McTague and Gibbs for the equilibrium case and by Mandel for relaxation. The ratio of the relaxation time for the low-frequency process to that previously observed at much higher frequencies suggests that these relaxations result from counterion fluctuations along the longitudinal and transverse axes of the molecule, respectively.  相似文献   

10.
The interaction of cytochrome c with a paraffin-wax-impregnated spectroscopic graphite electrode (WISGE) was studied in a medium consisting of 0.1 M potassium phosphate, pH 7.0, by means of differential pulse and cyclic voltammetry. Ferricytochrome c yields on voltammograms a single cathodic peak C around a potential of -0.3 V (vs. Ag/AgCl) and two anodic peaks AI and AII around the potentials of 0.66 and 0.89 V, respectively. Cathodic peak C corresponds to a catalytic reaction during which ferricytochrome c is reduced to ferrocytochrome c: ferricytochrome c is then regenerated by chemical oxidation of ferrocytochrome c by oxygen adsorbed at the WISGE surface. The first, more negative anodic peak AI corresponds to anodic electrochemical oxidation of tyrosine residues, whereas the second, more positive anodic peak (peak AII) corresponds to an anodic reaction of haemin. Voltammetry at a WISGE may provide a valuable technique for obtaining data about cytochrome c properties on electrically charged surface.  相似文献   

11.
The antimicrobial efficiency of reactive species-based control strategies is significantly affected by the dynamics of reactive species in the biological environment. Atmospheric-pressure nonthermal plasma is an ionized gas in which various reactive species are produced. The various levels of antimicrobial activity may result from the dynamic interaction of the plasma-generated reactive species with the environment. However, the nature of the interaction between plasma and environments is poorly understood. In this study, we analyzed the influence of the ionic strength of surrounding solutions (environment) on the antimicrobial activity of plasma in relation to the plasma-generated reactive species using a model filamentous fungus, Neurospora crassa. Our data revealed that the presence of sodium chloride (NaCl) in the background solution attenuated the deleterious effects of plasma on germination, internal structure, and genomic DNA of fungal spores. The protective effects of NaCl were not explained exclusively by pH, osmotic stability, or the level of reactive species in the solution. These were strongly associated with the ionic strength of the background solution. The presence of ions reduced plasma toxicity, which might be due to a reduced access of reactive species to fungal spores, and fungal spores were inactivated by plasma in a background fluid of nonionic osmolytes despite the low level of reactive species. Our results suggest that the surrounding environment may affect the behavior of reactive species, which leads to different biological consequences regardless of their quantity. Moreover, the microbicidal effect of plasma can be synergistically regulated through control of the microenvironment.  相似文献   

12.
The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or changes in the protein environment surrounding the chromophore that affect either the ground or excited electronic states. The resonance Raman spectrum, on the other hand, reflects the heme structure in the ground electronic state only and shows no significant difference between cytochrome a vibrations in the complex or free enzyme. The only major difference between the Raman spectra of the free enzyme and complex is a broadening of the cytochrome a3 formyl band of the complex that is relieved upon complex dissociation at high ionic strength. These data suggest that the differences observed in the second derivative and CD spectra are the result of changes in the protein environment around cytochrome a that affect the electronic excited state. By analogy to other protein-chromophore systems, we suggest that the energy of the Soret pi* state of cytochrome a may be affected by (1) changes in the local dielectric, possibly brought about by movement of a charged amino acid side chain in proximity to the heme group, or (2) pi-pi interactions between the heme and aromatic amino acid residues.  相似文献   

13.
Spin-labeled pig heart cytochromes c singly modified at Met-65, Tyr-74 and at one of the lysine residues, Lys-72 or Lys-73, were investigated by the ESR method under conditions of different ligand and redox states of the heme and at various pH values. Replacement of Met-80 by the external ligand, cyanide, was shown to produce a sharp increase in the mobility of all the three bound labels while reduction of the spin-labeled ferricytochromes c did not cause any marked changes in their ESR spectra. In the pH range 6-13, two conformational transitions in ferricytochrome c were observed which preceded its alkaline denaturation: the first with pK 9.3 registered by the spin label at the Met-65 position, and the second with pK 11.1 registered by the labels bound to Tyr-74 and Lys-72(73). The conformational changes in the 'left-hand part' of ferricytochrome c are most probably induced in both cases by the exchange of internal protein ligands at the sixth coordination site of the heme.  相似文献   

14.
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1.  相似文献   

15.
Dielectric relaxation (DR) study was performed to reveal the hydration change of Pseudomonas aeruginosa ferric cytochrome c551 (PA c551) in dilute aqueous solutions upon the acid unfolding which undergoes a two-state transition. The DR spectrum of a small spherical region containing a PA c551 molecule and its surrounding water shell was derived from the solution and solvent spectra by dielectric mixture theories. The derived spectrum was well-fitted with a sum of a Debye relaxation component (C1) with a DR frequency around 4.7 GHz and the bulk solvent component (CB). Upon acid unfolding, the DR amplitude of CB decreased with decreasing pH in an inverse manner to that of C1, while the total DR amplitude was almost constant. It indicates that C1 is due to the hydration water of PA c551. Little change in the DR frequency of C1 and a 1.7-fold increase in hydration number were observed.  相似文献   

16.
A theoretical model for the effect of the dielectric constant (c) of the solvent medium on ferrocytochrome c oxidation by ferricyanide is developed to account for the observed variations of the rate constant (k) of reactions in aqueous binary mixtures with alcohols (less than 5-10 mol% ethanol and propranolol). A correlation between k and c is found if ln k is expressed as a function of the Kirkwood parameter (c-1)(2c+1). The results of calculations indicate that the use of the 'overall dipole moment' of cytochrome c in oxidoreduction studies is likely to be unreliable. Instead, the decrease in k in alcohol/water mixtures is best explained--in conformity with Onsager's theory of the reaction field--by a polarity effect on the dipole moment of the cytochrome c heme upon diffusion of the polar solvent molecules into the low dielectric constant heme crevice.  相似文献   

17.
Changes in the steady-state mRNA levels of the gene encoding cytochrome c were analyzed after feeding carbohydrates to detached leaves of sunflower (Helianthus annuus L.). Glucose, fructose and sucrose promoted an increase in mRNA levels, which was not observed with mannitol and other metabolites such as glycerol or acetate. The increase in mRNA levels was proportionally higher in dark-treated leaves. The effect of sugars could be mimicked by compounds that are phosphorylated by hexokinase but not further metabolized, such as mannose or 2-deoxyglucose. This may indicate that hexokinase is involved in the induction of the cytochrome c gene by carbohydrates. The presence of potassium phosphate had no significant effect on the induction by sugars. Our results indicate that the modulation of the expression of nuclear genes encoding mitochondrial components should be added to the list of known effects of carbohydrates on respiration. Received: 5 February 1998 / Accepted: 22 April 1998  相似文献   

18.
Cytochrome cH is the electron donor to the oxidase in methylotrophic bacteria. Its amino acid sequence suggests that it is a typical Class 1 cytochrome c, but some features of the sequence indicated that its structure might be of special interest. The structure of oxidized cytochrome cH has been solved to 2.0 A resolution by X-ray diffraction. It has the classical tertiary structure of the Class 1 cytochromes c but bears a closer gross resemblance to mitochondrial cytochrome c than to the bacterial cytochrome c2. The left-hand side of the haem cleft is unique; in particular, it is highly hydrophobic, the usual water is absent, and the "conserved" Tyr67 is replaced by tryptophan. A number of features of the structure demonstrate that the usual hydrogen bonding network involving water in the haem channel is not essential and that other mechanisms may exist for modulation of redox potentials in this cytochrome.  相似文献   

19.
Ferulic acid (FA) is one of the most effective components of a traditional Chinese medicine, angelica, and cytochrome c plays a vital role in apoptosis. Here we report the application of fluorescence spectroscopy, isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and circular dichroism (CD) to investigate the mechanism for the interaction of bovine heart cytochrome c with FA and the effect of the binding on native state stability of the protein at physiological pH. Fluorescence spectroscopic studies together with ITC measurements indicate that FA binds to cytochrome c with moderate affinity and quenches the intrinsic fluorescence of the protein in a static way. ITC experiments show that the interaction of cytochrome c with FA is driven by a moderately favorable entropy increase in combination with a less favorable enthalpy decrease for the first binding site of the protein. The melting temperature of cytochrome c in the presence of FA measured by DSC and CD increases 4.0 and 5.0 °C, respectively, compared with that in the absence of FA. Taken together, these results indicate that FA binds to and stabilizes cytochrome c at physiological pH. Furthermore, binding of FA to cytochrome c inhibits cytochrome c-induce apoptosis of human hepatoma cell line SMMC-7721. Our data provide insight into the mechanism of drug–protein interactions, and will be helpful to the understanding of the mechanism for FA-inhibited and cytochrome c-induced apoptosis.  相似文献   

20.
Crystals of bacteriophage T4 lysozyme used for structural studies are routinely grown from concentrated phosphate solutions. It has been found that crystals in the same space group can also be grown from solutions containing 0.05 M imidazole chloride, 0.4 M sodium choride, and 30% polyethylene glycol 3500. These crystals, in addition, can also be equilibrated with a similar mother liquor in which the sodium chloride concentration is reduced to 0.025 M. The availability of these three crystal variants has permitted the structure of T4 lysozyme to be compared at low, medium, and high ionic strength. At the same time the X-ray structure of phage T4 lysozyme crystallized from phosphate solutions has been further refined against a new and improved X-ray diffraction data set. The structures of T4 lysozyme in the crystals grown with polyethylene glycol as a precipitant, regardless of the sodium chloride concentration, were very similar to the structure in crystals grown from concentrated phosphate solutions. The main differences are related to the formation of mixed disulfides between cysteine residues 54 and 97 and 2-mercaptoethanol, rather than to the differences in the salt concentration in the crystal mother liquor. Formation of the mixed disulfide at residue 54 resulted in the displacement of Arg-52 and the disruption of the salt bridge between this residue and Glu-62. Other than this change, no obvious alterations in existing salt bridges in T4 lysozyme were observed. Neither did the reduction in the ionic strength of the mother liquor result in the formation of new salt bridge interactions. These results are consistent with the ideas that a crystal structure determined at high salt concentrations is a good representation of the structure at lower ionic strengths, and that models of electrostatic interactions in proteins that are based on crystal structures determined at high salt concentrations are likely to be relevant at physiological ionic strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号