首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao YN  Zhang QS  Yan XZ  Zhu G  Wang ED 《FEBS letters》2003,547(1-3):197-200
The 19F nuclear magnetic resonance (NMR) spectra of 4-fluorotryptophan (4-F-Trp)-labeled Escherichia coli arginyl-tRNA synthetase (ArgRS) show that there are distinct conformational changes in the catalytic core and tRNA anticodon stem and loop-binding domain of the enzyme, when arginine and tRNA(Arg) are added to the unliganded enzyme. We have assigned five fluorine resonances of 4-F-Trp residues (162, 172, 228, 349 and 446) in the spectrum of the fluorinated enzyme by site-directed mutagenesis. The local conformational changes of E. coli ArgRS induced by its substrates observed herein by 19F NMR are similar to those of crystalline yeast homologous enzyme.  相似文献   

2.
3.
Geslain R  Bey G  Cavarelli J  Eriani G 《Biochemistry》2003,42(51):15092-15101
The aim of this work was to characterize crucial amino acids for the aminoacylation of tRNA(Arg) by yeast arginyl-tRNA synthetase. Alanine mutagenesis was used to probe all the side chain mediated interactions that occur between tRNA(Arg2)(ICG) and ArgRS. The effects of the substitutions were analyzed in vivo in an ArgRS-knockout strain and in vitro by measuring the aminoacylation efficiencies for two distinct tRNA(Arg) isoacceptors. Nine mutants that generate lethal phenotypes were identified, suggesting that only a limited set of side chain mediated interactions is essential for tRNA recognition. The majority of the lethal mutants was mapped to the anticodon binding domain of ArgRS, a helix bundle that is characteristic for class Ia synthetases. The alanine mutations induce drastic decreases in the tRNA charging rates, which is correlated with a loss in affinity in the catalytic site for ATP. One of those lethal mutations corresponds to an Arg residue that is strictly conserved in all class Ia synthetases. In the known crystallographic structures of complexes of tRNAs and class Ia synthetases, this invariant Arg residue stabilizes the idiosyncratic conformation of the anticodon loop. This paper also highlights the crucial role of the tRNA and enzyme plasticity upon binding. Divalent ions are also shown to contribute to the induced fit process as they may stabilize the local tRNA-enzyme interface. Furthermore, one lethal phenotype can be reverted in the presence of high Mg(2+) concentrations. In contrast with the bacterial system, in yeast arginyl-tRNA synthetase, no lethal mutation has been found in the ArgRS specific domain recognizing the Dhu-loop of the tRNA(Arg). Mutations in this domain have no effects on tRNA(Arg) aminoacylation, thus confirming that Saccharomyces cerevisiae and other fungi belong to a distinct class of ArgRS.  相似文献   

4.
Guigou L  Mirande M 《Biochemistry》2005,44(50):16540-16548
Arginyl-tRNA synthetase (ArgRS) catalyzes formation of arginyl-adenylate in a tRNA-dependent reaction. Previous studies have revealed that conformational changes occur upon tRNA binding. In this study, we analyzed the sequence and structural features of tRNA that are essential to activate the catalytic center of mammalian arginyl-tRNA synthetase. Here, tRNA variants with different activator potential are presented. The three regions that are crucial for activation of ArgRS are the terminal adenosine, the D-loop, and the anticodon stem-loop of tRNA. The Add-1 N-terminal domain of ArgRS, which has the very unique property among aminoacyl-tRNA synthetases to interact with the D-loop in the corner of the convex side of tRNA, has an essential role in anchoring tRNA and participating in tRNA-induced amino acid activation. The results suggest that locking the acceptor extremity, the anticodon loop, and the D-loop of tRNA on the catalytic, anticodon-binding, and Add-1 domains of ArgRS also requires some flexibility of the tRNA molecule, provided by G:U base pairs, to achieve the productive conformation of the active site of the enzyme by induced fit.  相似文献   

5.
Arginine is coded for by CGN (N = G, A, U, C), AGA and AGG. In Escherichia coli there is little tRNA for AGA and AGG and the use of these codons is strongly avoided in virtually all genes. Recently, we demonstrated that the presence of tandem AGA or AGG codons in mRNA causes frameshifts with high frequency. Here, we show that phaseshifts can be suppressed when cells are transformed with the gene for tRNA(T4Arg) or E. coli tRNA(argU,Arg) demonstrating that such errors are the result of tRNA depletion. Bacteriophage T4 encoded tRNA(Arg) (anticodon UCU) corrects shifts at AGA-AGA but not at AGG-AGG, suggesting that this tRNA can only read AGA. Similarly, comparison of the translational efficiencies in an argU (Ts) mutant and in its isogenic wild type parent indicates that argU tRNA (anticodon UCU) reads AGA but not AGG. An argU (Ts) mutant barely reads through AGA-AGA at 42 degrees C but translation of AGG-AGG is hardly, if at all, affected. Overexpression of argU+ relaxes the codon specificity. The thermosensitive mutant in argU, previously called dnaY because it is defective in DNA replication, can be complemented for growth by the gene for tRNA(T4Arg). This implies that the sole function of the argU gene product is to sustain protein synthesis and that its role in replication is probably indirect.  相似文献   

6.
In order to utilize 19F nuclear magnetic resonance (NMR) to probe the solution structure of Escherichia coli tRNAVal labeled by incorporation of 5-fluorouracil, we have assigned its 19F spectrum. We describe here assignments made by examining the spectra of a series of tRNAVal mutants with nucleotide substitutions for individual 5-fluorouracil residues. The result of base replacements on the structure and function of the tRNA are also characterized. Mutants were prepared by oligonucleotide-directed mutagenesis of a cloned tRNAVal gene, and the tRNAs transcribed in vitro by bacteriophage T7 RNA polymerase. By identifying the missing peak in the 19F NMR spectrum of each tRNA variant we were able to assign resonances from fluorouracil residues in loop and stem regions of the tRNA. As a result of the assignment of FU33, FU34 and FU29, temperature-dependent spectral shifts could be attributed to changes in anticodon loop and stem conformation. Observation of a magnesium ion-dependent splitting of the resonance assigned to FU64 suggested that the T-arm of tRNAVal can exist in two conformations in slow exchange on the NMR time scale. Replacement of most 5-fluorouracil residues in loops and stems had little effect on the structure of tRNAVal; few shifts in the 19F NMR spectrum of the mutant tRNAs were noted. However, replacing the FU29.A41 base-pair in the anticodon stem with C29.G41 induced conformational changes in the anticodon loop as well as in the P-10 loop. Effects of nucleotide substitution on aminoacylation were determined by comparing the Vmax and Km values of tRNAVal mutants with those of the wild-type tRNA. Nucleotide substitution at the 3' end of the anticodon (position 36) reduced the aminoacylation efficiency (Vmax/Km) of tRNAVal by three orders of magnitude. Base replacement at the 5' end of the anticodon (position 34) had only a small negative effect on the aminoacylation efficiency. Substitution of the FU29.A41 base-pair increased the Km value 20-fold, while Vmax remained almost unchanged. The FU4.A69 base-pair in the acceptor stem, could readily be replaced with little effect on the aminoacylation efficiency of E. coli tRNAVal, indicating that this base-pair is not an identity element of the tRNA, as suggested by others.  相似文献   

7.
Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination.  相似文献   

8.
将大肠杆菌精氨酰tRNA合成酶(ArgRS)上Lys306用基因点突变的方法分别变为Ala和Arg的密码子;得到变种基因args306KA和args306KR。变种基因重组在pUC18上,转化到大肠杆菌TG1中,转化子中ArgRS及其变种ArgRS306KA和ArgRS306KR所表达的蛋白量至少为TG1表达ArgRS蛋白量的100倍。细胞粗抽提液中ArgRS的比活TG1、转化子pUC18-args、pUC18-args306KA和pUC18-args306KR分别为1.65、210、1.8和38单位/毫克。结果表明ArsRS的Lys306为Ala取代使活力完全丧失;若被Arg取代,则活力丧失80%以上。Lys306为ArgRS活力所必需。  相似文献   

9.
Codon-anticodon interaction was investigated in fully active 5-fluorouracil-substituted E. coli tRNAVal1 (anticodon FAC) by 19F NMR spectroscopy. Binding of the codon GpUpA results in the upfield shift of a 19F resonance at 3.9 ppm in the central region of the 19F NMR spectrum, whereas trinucleotides not complementary to the anticodon have no effect. The same 19F resonance shifts upfield upon formation of an anticodon-anticodon dimer between the 19F-labeled tRNA and E. coli tRNATyr2 (anticodon QUA). These results permit assignment of the peak at 3.9 ppm to the 5-fluorouracil at position 34 in the anticodon of fluorouracil-substituted tRNAVal1. The methionine codon ApUpG also causes a sequence-specific upfield shift of a peak in the central part of the 19F NMR spectrum of fluorinated E. coli tRNAMetm. However, ApUpG has no effect on the 19F spectrum of 19F-labeled E. coli tRNAMetf, indicating possible conformational differences between the anticodon loop of initiator and chain-elongating methionine tRNAs. 19F NMR experiments detect no binding of CpGpApA to the complementary FpFpCpG (replaces Tp psi pCpG) in the T-loop of 5-fluorouracil-substituted tRNAVal1, in the presence or absence of codon, suggesting that the tertiary interactions between the T- and D-loops are not disrupted by codon-anticodon interactions.  相似文献   

10.
11.
12.
Kersten MV  Dunn SD  Wise JG  Vogel PD 《Biochemistry》2000,39(13):3856-3860
Electron spin resonance (ESR) spectroscopy using site-specific cysteine spin-labeling of the catalytic nucleotide binding sites of F(1)-ATPase was employed to investigate conformational changes within the nucleotide binding sites of the enzyme. Mutant Escherichia coli F(1) that had been modified at position beta-Y331C with a spin label showed almost normal catalytic activity and enabled us to study the effects of binding of different nucleotides and of the F(o) subunit b on the conformation of the catalytic binding sites. The ESR spectra of the spin-labeled, nucleotide-depleted F(1) indicate asymmetry within the sites as is expected from the structural models of the enzyme. Nucleotide binding to the enzyme clearly affects the conformation of the sites; the most pronounced feature upon nucleotide binding is the formation of catalytic site(s) in a very open conformation. Using the same beta-331 spin-labeled F(1) and a truncated form of F(o) subunit b, b(24)(-)(156), we found that binding of b(24)(-)(156) to spin-labeled F(1) significantly changes the conformation of the catalytic sites. In this paper we present data that for the first time directly show that a conformational binding change takes place upon binding of nucleotides to the nucleotide binding sites and that also show that binding of b(24)(-)(156) strongly affects the conformation of the catalytic sites, most likely by increasing the population of binding sites that are in the open conformation.  相似文献   

13.
A kinetic analysis of the arginyl-tRNA synthetase (ArgRS) from Escherichia coli was accomplished with the goal of improving the rate equations so that they correspond more closely to the experimental results. 22 different steady-state kinetic two-ligand experiments were statistically analysed simultaneously. A mechanism and values for the ArgRS constants were found where the average error was only 6.2% and ranged from 2.5 to 11.2% in the different experiments. The mechanism included not only the normal activation and transfer reactions but also an additional step which may be a conformational change after the transfer reaction but before the dissociation of the product Arg-tRNA from the enzyme. The forward rate constants in these four steps were low, 8.3-27 s(-1), but the reverse rate constants of the activation and transfer reactions were considerably higher (230 and 161 s(-1)). Therefore, in the presence of even low concentrations of PP(i) and AMP, the rate limitation occurs at the late steps of the total reaction. AMP increases the rate of the ATP-PP(i) exchange reaction due to the high reverse rate in the transfer reaction. The rate equation obtained was used to calculate the steady-state enzyme intermediate concentrations and rates between the intermediates. Three different Mg2+ binding sites were required to describe the Mg2+ dependence. One of them was the normal binding to ATP and the others to tRNA or enzyme. The measured Mg2+ dependence of the apparent equilibrium constant of the ArgRS reaction was consistent with the Mg2+ dependences of the reaction rates on the rate equation. Chloride inhibits the ArgRS reaction, 160 mM KCl caused a 50% inhibition if the ionic strength was kept constant with K-acetate. KCl strongly affected the K(m)(app) (tRNA) value. A difference was detected in the progress curves between the aminoacylation and ATP-PP(i) exchange rates. When all free tRNA(Arg) had been used from the reaction mixture, the aminoacylation reaction stopped, but the ATP-PP(i) exchange continued at a lowered rate.  相似文献   

14.
Madore E  Lipman RS  Hou YM  Lapointe J 《Biochemistry》2000,39(23):6791-6798
The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.  相似文献   

15.
16.
17.
Hauser K  Barth A 《Biophysical journal》2007,93(9):3259-3270
Protonation of acidic residues in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA 1a) was studied by multiconformation continuum electrostatic calculations in the Ca(2+)-bound state Ca(2)E1, in the Ca(2+)-free state E2(TG) with bound thapsigargin, and in the E2P (ADP-insensitive phosphoenzyme) analog state with MgF(4)(2-) E2(TG+MgF(4)(2-)). Around physiological pH, all acidic Ca(2+) ligands (Glu(309), Glu(771), Asp(800), and Glu(908)) were unprotonated in Ca(2)E1; in E2(TG) and E2(TG+MgF(4)(2-)) Glu(771), Asp(800), and Glu(908) were protonated. Glu(771) and Glu(908) had calculated pK(a) values larger than 14 in E2(TG) and E2(TG+MgF(4)(2-)), whereas Asp(800) titrated with calculated pK(a) values near 7.5. Glu(309) had very different pK(a) values in the Ca(2+)-free states: 8.4 in E2(TG+MgF(4)(2-)) and 4.7 in E2(TG) because of a different local backbone conformation. This indicates that Glu(309) can switch between a high and a low pK(a) mode, depending on the local backbone conformation. Protonated Glu(309) occupied predominantly two main, very differently orientated side-chain conformations in E2(TG+MgF(4)(2-)): one oriented inward toward the other Ca(2+) ligands and one oriented outward toward a protein channel that seems to be in contact with the cytoplasm. Upon deprotonation, Glu(309) adopted completely the outwardly orientated side-chain conformation. The contact of Glu(309) with the cytoplasm in E2(TG+MgF(4)(2-)) makes this residue unlikely to bind lumenal protons. Instead it might serve as a proton shuttle between Ca(2+)-binding site I and the cytoplasm. Glu(771), Asp(800), and Glu(908) are proposed to take part in proton countertransport.  相似文献   

18.
5-Fluorouracil is readily incorporated into active tRNA(Val) transcribed in vitro from a recombinant phagemid containing a synthetic E. coli tRNA(Val) gene. This tRNA has the expected sequence and a secondary and tertiary structure resembling that of native 5-fluorouracil-substituted tRNA(Val), as judged by 19F NMR spectroscopy. To assign resonances in the 19F spectrum, mutant phagemids were constructed having base changes in the tRNA gene. Replacement of fluorouracil in the T-stem with cytosine, converting a FU-G to a C-G base pair, results in the loss of one downfield peak in the 19F NMR spectrum of the mutant tRNA(Val). The spectra of other mutant tRNAs having guanine for adenine substitutions that convert FU-A to FU-G base pairs all have one resonance shifted 4.5 to 5 ppm downfield. These results allow assignment of several 19F resonances and demonstrate that the chemical shift of the 19F signal from base-paired 5-fluorouracil differs considerably between Watson-Crick and wobble geometry.  相似文献   

19.
In the crystal structure of mitochondrial F1-ATPase, two beta subunits with a bound Mg-nucleotide are in "closed" conformations, whereas the third beta subunit without bound nucleotide is in an "open" conformation. In this "CCO" (beta-closed beta-closed beta-open) conformational state, Ile-390s of the two closed beta subunits, even though they are separated by an intervening alpha subunit, have a direct contact. We replaced the equivalent Ile of the alpha3beta3gamma subcomplex of thermophilic F1-ATPase with Cys and observed the formation of the beta-beta cross-link through a disulfide bond. The analysis of conditions required for the cross-link formation indicates that: (i) F1-ATPase takes the CCO conformation when two catalytic sites are filled with Mg-nucleotide, (ii) intermediate(s) with the CCO conformation are generated during catalytic cycle, (iii) the Mg-ADP inhibited form is in the CCO conformation, and (iv) F1-ATPase dwells in conformational state(s) other than CCO when only one (or none) of catalytic sites is filled by Mg-nucleotide or when catalytic sites are filled by Mg2+-free nucleotide. The alpha3beta3gamma subcomplex containing the beta-beta cross-link retained the activity of uni-site catalysis but lost that of multiple catalytic turnover, suggesting that open-closed transition of beta subunits is required for the rotation of gamma subunit but not for hydrolysis of a single ATP.  相似文献   

20.
In the crystal structure of the bovine heart mitochondrial F(1)-ATPase (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the two liganded beta subunits, one with MgAMP-PNP bound to the catalytic site (beta(T)) and the other with MgADP bound (beta(D)) have closed conformations. The empty beta subunit (beta(E)) has an open conformation. In beta(T) and beta(D), the distance between the carboxylate of beta-Asp(315) and the guanidinium of beta-Arg(337) is 3.0-4.0 A. These side chains are at least 10 A apart in beta(E). The alpha(3)(betaD311C/R333C)(3)gamma subcomplex of TF(1) with the corresponding residues substituted with cysteine has very low ATPase activity unless it is reduced prior to assay or assayed in the presence of dithiothreitol. The reduced subcomplex hydrolyzes ATP at 50% the rate of wild-type and is rapidly inactivated by oxidation by CuCl(2) with or without magnesium nucleotides bound to catalytic sites. Titration of the subcomplex with iodo[(14)C]acetamide after prolonged treatment with CuCl(2) in the presence or absence of 1 mM MgADP revealed nearly two free sulfhydryl groups/mol of enzyme. Therefore, one pair of introduced cysteines is located on a beta subunit that exists in the open or partially open conformation even when catalytic sites are saturated with MgADP. Since V(max) of ATP hydrolysis is attained when three catalytic sites of F(1) are saturated, the catalytic site that binds ATP must be closing as the catalytic site that releases products is opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号