共查询到20条相似文献,搜索用时 15 毫秒
1.
The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli. 相似文献
2.
Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila
Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain activates Rac, which in turn activates Pak. Mutations in trio result in projection defects similar to those observed in both Pak and dock mutants, and trio interacts genetically with Rac, Pak, and dock. These data define a signaling pathway from Trio to Rac to Pak that links guidance receptors to the growth cone cytoskeleton. We propose that distinct signals transduced via Trio and Dock act combinatorially to activate Pak in spatially restricted domains within the growth cone, thereby controlling the direction of axon extension. 相似文献
3.
During development of the adult Drosophila visual system, axons of the eight photoreceptors in each ommatidium fasciculate together and project as a single bundle towards the optic lobes of the brain. Within the brain, individual photoreceptor axons from each bundle then seek specific targets in distinct layers of the optic lobes. The axons of photoreceptors R1-R6 terminate in the lamina, while R7 and R8 axons pass through the lamina to terminate in separate layers of the medulla. To identify genes required for photoreceptor axon guidance, including those with essential functions during early development, we have devised a strategy for the simple and efficient generation of genetic mosaics in which mutant photoreceptor axons innervate a predominantly wild-type brain. In a large-scale saturation mutagenesis performed using this system, we recovered new alleles of the gene encoding the receptor tyrosine phosphatase PTP69D. PTP69D has previously been shown to function in the correct targeting of motor axons in the embryo and R1-R6 axons in the visual system. Here, we show that PTP69D is also required for correct targeting of R7 axons. Whereas mutant R1-R6 axons occasionally extend beyond their normal targets in the lamina, mutant R7 axons often fail to reach their targets in the medulla, stopping instead at the same level as the R8 axon. These targeting errors are difficult to reconcile with models in which PTP69D plays an instructive role in photoreceptor axon targeting, as previously proposed. Rather, we suggest that PTP69D plays a permissive role, perhaps reducing the adhesion of R1-R6 and R7 growth cones to the pioneer R8 axon so that they can respond independently to their specific targeting cues. 相似文献
4.
J Palka 《Journal of neurobiology》1986,17(6):581-584
Evidence is offered that the axons of developing sensory neurons in the wing of Drosophila are guided (given both location and polarity information) by the epithelium over which they grow. This guidance is effective in the absence of such potential additional cues as guidepost neurons and physical channels. 相似文献
5.
Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline 总被引:15,自引:0,他引:15
Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance. 相似文献
6.
Proper axon pathfinding requires that growth cones execute appropriate turns and branching at particular choice points en route to their synaptic targets. Here we demonstrate that the Drosophila metalloprotease tolloid-related (tlr) is required for proper fasciculation/defasciculation of motor axons in the CNS and for normal guidance of many motor axons enroute to their muscle targets. Tlr belongs to a family of developmentally important proteases that process various extracellular matrix components, as well as several TGF-beta inhibitory proteins and pro-peptides. We show that Tlr is a circulating enzyme that processes the pro-domains of three Drosophila TGF-beta-type ligands, and, in the case of the Activin-like protein Dawdle (Daw), this processing enhances the signaling activity of the ligand in vitro and in vivo. Null mutants of daw, as well as mutations in its receptor babo and its downstream mediator Smad2, all exhibit axon guidance defects that are similar to but less severe than tlr. We suggest that by activating Daw and perhaps other TGF-beta ligands, Tlr provides a permissive signal for axon guidance. 相似文献
7.
The transmembrane protein Off-track associates with Plexins and functions downstream of Semaphorin signaling during axon guidance 总被引:4,自引:0,他引:4
The Plexin family of transmembrane proteins appears to function as repulsive receptors for most if not all Semaphorins. Here, we use genetic and biochemical analysis in Drosophila to show that the transmembrane protein Off-track (OTK) associates with Plexin A, the receptor for Sema 1a, and that OTK is a component of the repulsive signaling response to Semaphorin ligands. In vitro, OTK associates with Plexins. In vivo, mutations in the otk gene lead to phenotypes resembling those of loss-of-function mutations of either Sema1a or PlexA. The otk gene displays strong genetic interactions with Sema1a and PlexA, suggesting that OTK and Plexin A function downstream of Sema 1a. 相似文献
8.
alpha- and beta-Spectrin are major components of a submembrane cytoskeletal network connecting actin filaments to integral plasma membrane proteins. Besides its structural role in red blood cells, the Spectrin network is thought to function in non-erythroid cells during protein targeting and membrane domain formation. Here, we demonstrate that beta-Spectrin is required in neurons for proper midline axon guidance in the Drosophila embryonic CNS. In beta-spectrin mutants many axons inappropriately cross the CNS midline, suggesting a role for beta-Spectrin in midline repulsion. Surprisingly, neither the Ankyrin-binding nor the pleckstrin homology (PH) domains of beta-Spectrin are required for accurate guidance decisions. alpha-Spectrin is dependent upon beta-Spectrin for its normal subcellular localization and/or maintenance, whereas alpha-spectrin mutants exhibit a redistribution of beta-Spectrin to the axon scaffold. beta-spectrin mutants show specific dose-dependent genetic interactions with the midline repellent slit and its neuronal receptor roundabout (robo), but not with other guidance molecules. The results suggest that beta-Spectrin contributes to midline repulsion through the regulation of Slit-Robo pathway components. We propose that the Spectrin network is playing a role independently of Ankyrin in the establishment and/or maintenance of specialized membrane domains containing guidance molecules that ensure the fidelity of axon repulsion at the midline. 相似文献
9.
During Drosophila visual system development, photoreceptors R7 and R8 project axons to targets in distinct layers of the optic lobe. We show here that the LAR receptor tyrosine phosphatase is required in the eye for correct targeting of R7 axons. In LAR mutants, R7 axons initially project to their correct target layer, but then retract to the R8 target layer. This targeting defect can be fully rescued by transgenic expression of LAR in R7, and partially rescued by expression of LAR in R8. The phosphatase domains of LAR are required for its activity in R7, but not in R8. These data suggest that LAR can act both as a receptor in R7, and as a ligand provided by R8. Genetic interactions implicate both Enabled and Trio in LAR signal transduction. 相似文献
10.
11.
The development of axon tracts in the early vertebrate brain is controlled by combinations of soluble, membrane-bound and extracellular matrix molecules. How these multiple and sometimes conflicting guidance cues are integrated in order to establish stereotypical pathways remains to be determined. We show here that when interactions between the chemoattractive signal Netrin1a and its receptor Dcc are suppressed using a loss-of-function approach, a novel axon trajectory emerges in the dorsal diencephalon. Axons arising from a subpopulation of telencephalic neurons failed to project rostrally into the anterior commissure in the absence of either Netrin1a or Dcc. Instead these axons inappropriately exited the telencephalon and ectopically coursed caudally into virgin neuroepithelium. This response was highly specific since loss-of-function of Netrin1b, a paralogue of Netrin1a, generated a distinct phenotype in the rostral brain. These results show that a subpopulation of telencephalic neurons, when freed from long-range chemoattraction mediated by Netrin1a-Dcc interactions, follow alternative instructive cues that lead to creation of an ectopic axon bundle in the diencephalon. This work provides insight into how integration of multiple guidance signals defines the initial scaffold of axon tracts in the embryonic vertebrate forebrain. 相似文献
12.
Lu M Kinchen JM Rossman KL Grimsley C deBakker C Brugnera E Tosello-Trampont AC Haney LB Klingele D Sondek J Hengartner MO Ravichandran KS 《Nature structural & molecular biology》2004,11(8):756-762
The members of the Dock180 superfamily of proteins are novel guanine nucleotide exchange factors (GEF) for Rho family GTPases and are linked to multiple biological processes from worms to mammals. ELMO is a critical regulator of Dock180, and the Dock180-ELMO complex functions as a bipartite GEF for Rac. We identified a mechanism wherein the PH domain of ELMO, by binding the Dock180-Rac complex in trans, stabilizes Rac in the nucleotide-free transition state. Mutagenesis studies reveal that this ELMO PH domain-dependent regulation is essential for the Dock180-ELMO complex to function in phagocytosis and cell migration. Genetic rescue studies in Caenorhabditis elegans using ELMO and its homolog CED-12 support the above observations in vivo. These data reveal a new mode of action of PH domains and a novel, evolutionarily conserved mechanism by which a bipartite GEF can activate Rac. 相似文献
13.
Keleman K Rajagopalan S Cleppien D Teis D Paiha K Huber LA Technau GM Dickson BJ 《Cell》2002,110(4):415-427
Axon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends on the precisely regulated expression of the Comm sorting receptor. 相似文献
14.
Mutations at the CLAVATA loci (CLV1, CLV2 and CLV3) result in the accumulation of undifferentiated cells at the shoot and floral meristems. We have isolated three mutant alleles of a novel locus, POLTERGEIST (POL), as suppressors of clv1, clv2 and clv3 phenotypes. All pol mutants were nearly indistinguishable from wild-type plants; however, pol mutations provided recessive, partial suppression of meristem defects in strong clv1 and clv3 mutants, and nearly complete suppression of weak clv1 mutants. pol mutations partially suppressed clv2 floral and pedicel defects in a dominant fashion, and almost completely suppressed clv2 phenotypes in a recessive manner. These observations, along with dominant interactions observed between the pol and wuschel (wus) mutations, indicate that POL functions as a critical regulator of meristem development downstream of the CLV loci and redundantly with WUS. Consistent with this, pol mutations do not suppress clv3 phenotypes by altering CLV1 receptor activation. 相似文献
15.
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis. 相似文献
16.
Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila 总被引:2,自引:0,他引:2
Mao Y Rauskolb C Cho E Hu WL Hayter H Minihan G Katz FN Irvine KD 《Development (Cambridge, England)》2006,133(13):2539-2551
The dachs gene was first identified almost a century ago based on its requirements for appendage growth, but has been relatively little studied. Here, we describe the phenotypes of strong dachs mutations, report the cloning of the dachs gene, characterize the localization of Dachs protein, and investigate the relationship between Dachs and the Fat pathway. Mutation of dachs reduces, but does not abolish, the growth of legs and wings. dachs encodes an unconventional myosin that preferentially localizes to the membrane of imaginal disc cells. dachs mutations suppress the effects of fat mutations on gene expression, cell affinity and growth in imaginal discs. Dachs protein localization is influenced by Fat, Four-jointed and Dachsous, consistent with its genetic placement downstream of fat. However, dachs mutations have only mild tissue polarity phenotypes, and only partially suppress the tissue polarity defects of fat mutants. Our results implicate Dachs as a crucial downstream component of a Fat signaling pathway that influences growth, affinity and gene expression during development. 相似文献
17.
Dang-Dang Li Shu-Yi Zhao Zhan-Qing Yang Cui-Cui Duan Chuan-Hui Guo Hong-Liang Zhang 《Cell cycle (Georgetown, Tex.)》2016,15(20):2792-2805
Although Hmgn5 is involved in the regulation of cellular proliferation and differentiation, its physiological function during decidualization is still unknown. Here we showed that Hmgn5 was highly expressed in the decidual cells. Silencing of Hmgn5 expression by specific siRNA reduced the proliferation of uterine stromal cells and expression of Ccnd3 and Cdk4 in the absence or presence of estrogen and progesterone, whereas overexpression of Hmgn5 exhibited the opposite effects. Simultaneously, Hmgn5 might induce the expression of Prl8a2 and Prl3c1 which were 2 well-known differentiation markers for decidualization. In the uterine stromal cells, cAMP analog 8-Br-cAMP and progesterone could up-regulate the expression of Hmgn5, but the up-regulation was impeded by H89 and RU486, respectively. Attenuation of Hmgn5 expression could block the differentiation of uterine stromal cells in response to cAMP and progesterone. Further studies found that regulation of cAMP and progesterone on Hmgn5 expression was mediated by Hoxa10. During in vitro decidualization, knockdown of Hmgn5 could abrogate Hoxa10-induced upregulation of Prl8a2 and Prl3c1, while overexpression of Hmgn5 reversed the inhibitory effects of Hoxa10 siRNA on the expression of Prl8a2 and Prl3c1. In the stromal cells undergoing decidualization, Hmgn5 might act downstream of Hoxa10 to regulate the expression of Cox-2, Vegf and Mmp2. Collectively, Hmgn5 may play an important role during mouse decidualization. 相似文献
18.
Rawson JM Dimitroff B Johnson KG Rawson JM Ge X Van Vactor D Selleck SB 《Current biology : CB》2005,15(9):833-838
Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential. 相似文献
19.
Mindorff EN O'Keefe DD Labbé A Yang JP Ou Y Yoshikawa S van Meyel DJ 《Genetics》2007,176(4):2247-2263
20.
There is increasing evidence that axons are guided by repulsion in several regions of the developing nervous system, although this has yet to be confirmed directly in vivo. As more candidate repulsion molecules are identified, it is becoming clear that collapse of the growth cone in vitro may be mediated by more than one intracellular mechanism. The present emphasis on molecular cloning of the ligands and their receptors should enable a proper definition of their function during development. 相似文献