首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degP gene, required for proteolysis in the cell envelope of Escherichia coli, maps at approximately 3.5 min on the chromosome. Null mutations in degP result in temperature-sensitive growth. In certain genetic backgrounds, expression of abnormal periplasmic or inner membrane proteins (protein fusions or proteins with internal deletions) enhances the temperature-sensitive phenotype. Such growth defects were used as a selection for cloning the degP gene into Mud4042 and pACYC184 plasmid vectors, and a restriction map was determined. Analysis of deletion and insertion mutations on one of these plasmids showed that the degP gene is approximately 1.5 kilobases in size. The plasmid-encoded DegP protein had an apparent molecular weight of 50,000, as determined by maxicell analysis. Protein fusions between DegP and alkaline phosphatase had high alkaline phosphatase enzymatic activity, indicating that DegP is a periplasmic or membrane protein.  相似文献   

2.
The periplasmic chaperones Skp, SurA, and DegP are implicated in the biogenesis of outer membrane proteins (OMPs) in Escherichia coli. Here, we investigated whether these chaperones exert similar functions in Neisseria meningitidis. Although N. meningitidis does not contain a homolog of the protease/chaperone DegP, it does possess a homolog of another E. coli protein, DegQ, which can functionally replace DegP when overproduced. Hence, we examined whether in N. meningitidis, DegQ acts as a functional homolog of DegP. Single skp, surA, and degQ mutants were easily obtained, showing that none of these chaperones is essential in N. meningitidis. Furthermore, all combinations of double mutants were generated and no synthetic lethality was observed. The absence of SurA or DegQ did not affect OMP biogenesis. In contrast, the absence of Skp resulted in severely lower levels of the porins PorA and PorB but not of other OMPs. These decreased levels were not due to proteolytic activity of DegQ, since porin levels remained low in a skp degQ double mutant, indicating that neisserial DegQ is not a functional homolog of E. coli DegP. The absence of Skp resulted in lower expression of the porB gene, as shown by using a P(porB)-lacZ fusion. We found no cross-species complementation when Skp of E. coli or N. meningitidis was heterologously expressed in skp mutants, indicating that Skp functions in a species-specific manner. Our results demonstrate an important role for Skp but not for SurA or DegQ in OMP biogenesis in N. meningitidis.  相似文献   

3.
The rates of synthesis of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis are controlled by a signal transduction pathway defined by at least four regulatory genes: degS, degU, degQ (formerly sacQ), and degR (formerly prtR). The DegS-DegU proteins show amino acid similarities with two-component procaryotic modulator-effector pairs such as NtrB-NtrC, CheA-CheY, and EnvZ-OmpR. By analogy with these systems, it is possible that DegS is a protein kinase which could catalyze the transfer of a phosphoryl moiety to DegU, which acts as a positive regulator. DegR and DegQ correspond to polypeptides of 60 and 46 amino acids, respectively, which also activate the synthesis of degradative enzymes. We show that the degS and degU genes are organized in an operon. The putative sigma A promoter of the operon was mapped upstream from degS. Mutations in degS and degU were characterized at the molecular level, and their effects on transformability and cell motility were studied. The expression of degQ was shown to be subject both to catabolite repression and DegS-DegU-mediated control, allowing an increase in the rate of synthesis of degQ under conditions of nitrogen starvation. These results are consistent with the hypothesis that this control system responds to an environmental signal such as limitations of nitrogen, carbon, or phosphate sources.  相似文献   

4.
DegP is a periplasmic protease that is a member of both the sigma(E) and Cpx extracytoplasmic stress regulons of Escherichia coli and is essential for viability at temperatures above 42 degrees C. [U-(14)C]acetate labeling experiments demonstrated that phospholipids were degraded in degP mutants at elevated temperatures. In addition, chloramphenicol acetyltransferase, beta-lactamase, and beta-galactosidase assays as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that large amounts of cellular proteins are released from degP cells at the nonpermissive temperature. A mutation in pldA, which encodes outer membrane phospholipase A (OMPLA), was found to rescue degP cells from the temperature-sensitive phenotype. pldA degP mutants had a normal plating efficiency at 42 degrees C, displayed increased viability at 44 degrees C, showed no degradation of phospholipids, and released far lower amounts of cellular protein to culture supernatants. degP and pldA degP mutants containing chromosomal lacZ fusions to Cpx and sigma(E) regulon promoters indicated that both regulons were activated in the pldA mutants. The overexpression of the envelope lipoprotein, NlpE, which induces the Cpx regulon, was also found to suppress the temperature-sensitive phenotype of degP mutants but did not prevent the degradation of phospholipids. These results suggest that the absence of OMPLA corrects the degP temperature-sensitive phenotype by inducing the Cpx and sigma(E) regulons rather than by inactivating the phospholipase per se.  相似文献   

5.
The degQ gene of Bacillus subtilis (natto), encoding a small peptide of 46 amino acids, is essential for the synthesis of extracellular poly-gamma-glutamate (γPGA). To elucidate the role of DegQ in γPGA synthesis, we knocked out the degQ gene in Bacillus subtilis (natto) and screened for suppressor mutations that restored γPGA synthesis in the absence of DegQ. Suppressor mutations were found in degS, the receptor kinase gene of the DegS-DegU two-component system. Recombinant DegS-His(6) mutant proteins were expressed in Escherichia coli cells and subjected to an in vitro phosphorylation assay. Compared with the wild type, mutant DegS-His(6) proteins showed higher levels of autophosphorylation (R208Q, M195I, L248F, and D250N), reduced autodephosphorylation (D250N), reduced phosphatase activity toward DegU, or a reduced ability to stimulate the autodephosphorylation activity of DegU (R208Q, D249G, M195I, L248F, and D250N) and stabilized DegU in the phosphorylated form. These mutant DegS proteins mimic the effect of DegQ on wild-type DegSU in vitro. Interestingly, DegQ stabilizes phosphorylated DegS only in the presence of DegU, indicating a complex interaction of these three proteins.  相似文献   

6.
The acylated precursor form of the colicin A lysis protein (pCalm) is specifically cleaved by the DegP protease into two acylated fragments of 6 and 4.5 kilodaltons (kDa). This cleavage was observed after globomycin treatment, which inhibits the processing of pCalm into mature colicin A lysis protein (Cal) and the signal peptide. The cleavage took place in lpp, pldA, and wild-type strans carrying plasmids which express the lysis protein following SOS induction and also in cells containing a plasmid which expresses it under the control of the tac promoter. Furthermore, the DegP protease was responsible for the production of two acylated Cal fragments of 3 and 2.5 kDa in cells carrying plasmids which overproduce the Cal protein, without treatment with globomycin. DegP could also cleave the acylated precursor form of a mutant Cal protein containing a substitution in he amino-terminal portion of the protein, but not that of a mutant Cal containing a frameshift mutation in its carboxyl-terminal end. The functions of Cal in causing protein release, quasi-lysis, and lethality were increased in degP41 cells, suggesting that mature Cal was produced in higher amounts in the mutant than in the wild type. These effects were limited in cells deficient in phospholipase A. Interactions between the DegP protease and phospholipase A were suggested by the characteristics of degP pldA double mutants.  相似文献   

7.
8.
Role of DegP protease on levels of various forms of colicin A lysis protein   总被引:2,自引:0,他引:2  
Abstract The total amount of the colicin A lysis protein produced by cells grown in rich medium was analysed by immunoblotting. The intermediate forms of synthesis of this small lipoprotein were present in the cells at any time of induction, confirming that processing and maturation of colicin A lysis protein are slow and incomplete processes. The level of these various forms varied according to the time of induction, the growth conditions, the producing strain and the plasmid carrying the cal gene. It depended mainly on the presence in the producing strain of a degP gene which encodes the DegP protease. According to growth conditions, the DegP protease hydrolysed either a part or the total amount of the acylated precursor form. In some cases, a protease(s) other than DegP seemed to act on either form(s) of the colicin A lysis protein.  相似文献   

9.
To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.  相似文献   

10.
Replacement of OmpF's conserved carboxy-terminal phenylalanine with dissimilar amino acids severely impaired its assembly into stable trimers. In some instances, interactions of mutant proteins with the outer membrane were also affected, as judged by their hypersensitivity phenotype. Synthesis of all mutant OmpF proteins elevated the expression of periplasmic protease DegP, and synthesis of most of them made its presence obligatory for cell viability. These results showed a critical role for DegP in the event of aberrant outer membrane protein assembly. The lethal phenotype of mutant OmpF proteins in a degP null background was eliminated when a protease-deficient DegP(S210A) protein was overproduced. Our data showed that this rescue from lethality and a subsequent increase in mutant protein levels in the envelope did not lead to the proper assembly of the mutant proteins in the outer membrane. Rather, a detergent-soluble and thermolabile OmpF species resembling monomers accumulated in the mutants, and to a lesser extent in the parental strain, when DegP(S210A) was overproduced. Interestingly, this also led to the localization of a significant amount of mutant polypeptides to the inner membrane, where DegP(S210A) also fractionated. These results suggested that the DegP(S210A)-mediated rescue from toxicity involved preferential sequestration of misfolded OmpF monomers from the normal assembly pathway.  相似文献   

11.
12.
We cloned and sequenced the sohB gene of Escherichia coli. The temperature-sensitive phenotype of bacteria that carry a Tn10 insertion in the htrA (degP) gene is relieved when the sohB gene is present in the cell on a multicopy plasmid (30 to 50 copies per cell). The htrA gene encodes a periplasmic protease required for bacterial viability only at high temperature, i.e., above 39 degrees C. The sohB gene maps to 28 min on the E. coli chromosome, precisely between the topA and btuR genes. The gene encodes a 39,000-Mr precursor protein which is processed to a 37,000-Mr mature form. Sequencing of a DNA fragment containing the gene revealed an open reading frame which could encode a protein of Mr 39,474 with a predicted signal sequence cleavage site between amino acids 22 and 23. Cleavage at this site would reduce the size of the processed protein to 37,474 Mr. The predicted protein encoded by the open reading frame has homology with the inner membrane enzyme protease IV of E. coli, which digests cleaved signal peptides. Therefore, it is possible that the sohB gene encodes a previously undiscovered periplasmic protease in E. coli that, when overexpressed, can partially compensate for the missing HtrA protein function.  相似文献   

13.
Enhancement of the production of soluble recombinant penicillin acylase in Escherichia coli via coexpression of a periplasmic protease/chaperone, DegP, was demonstrated. Coexpression of DegP resulted in a shift of in vivo penicillin acylase (PAC) synthesis flux from the nonproductive pathway to the productive one when pac was overexpressed. The number of inclusion bodies, which consist primarily of protein aggregates of PAC precursors in the periplasm, was highly reduced, and the specific PAC activity was highly increased. DegP was a heat shock protein induced in response to pac overexpression, suggesting that the protein could possibly suppress the physiological toxicity caused by pac overexpression. Coexpression of DegP(S210A), a DegP mutant without protease activity but retaining chaperone activity, could not suppress the physiological toxicity, suggesting that DegP protease activity was primarily responsible for the suppression, possibly by degradation of abnormal proteins when pac was overexpressed. However, a shortage of periplasmic protease activity was not the only reason for the deterioration in culture performance upon pac overexpression because coexpression of a DegP-homologous periplasmic protease, DegQ or DegS, could not suppress the physiological toxicity. The chaperone activity of DegP is proposed to be another possible factor contributing to the suppression.  相似文献   

14.
15.
A Shigella flexneri degP mutant, which was defective for plaque formation in Henle cell monolayers, had a reduced amount of IcsA detectable on the bacterial surface with antibody. However, the mutant secreted IcsA to the outer membrane at wild-type levels. This suggests that IcsA adopts an altered conformation in the outer membrane of the degP mutant with reduced exposure on the cell surface. IcsA is, therefore, unlikely to be accessible to actin-nucleating proteins within the eukaryotic cell cytoplasm, which is required for bacterial movement within the host cell and cell-to-cell spread. The degP mutant was somewhat more sensitive to detergents, antibiotics, and the antimicrobial peptide magainin, indicating that the degP phenotype was not limited to IcsA surface presentation. The plaque defect of the degP mutant, which is independent of DegP protease activity, was suppressed by overexpression of the periplasmic chaperone Skp but not by SurA. S. flexneri skp and surA mutants failed to form plaques in Henle cell monolayers and were defective in cell surface presentation and polar localization of IcsA. Therefore, the three periplasmic folding factors DegP, Skp, and SurA were all required for IcsA localization and plaque formation by S. flexneri.  相似文献   

16.
The disulfide bond-forming factor DsbA and the alkaline phosphatase are stable in the Escherichia coli periplasmic space and can be overproduced without significant perturbation of the cell's physiology. By contrast, DsbA'-PhoA hybrid proteins resulting from TnphoA insertions into different regions of a plasmid-borne dsbA gene could become toxic (lethal) to bacteria. Toxicity was concomitant with an impairment of some step of the export mechanism and depended on at least three parameters, i.e., (i) the rate of expression of the hybrid protein, (ii) the ability of the amino-terminal DsbA' domain of the hybrid protein to fold into a protease-resistant conformation in the periplasmic space, and (iii) the activity of the DegP periplasmic protease. Even under viable conditions of low expression, DsbA' folding-deficient hybrid proteins accumulated more than the folding-proficient ones in the insoluble material and this was aggravated in a strain lacking the DegP protease. When production was more elevated, the folding-deficient hybrid proteins became lethal, but only in strains lacking the DegP activity, while the folding-proficient ones were not. Under conditions of very high production by degP+ or degP strains, both types of hybrid proteins accumulated as insoluble preproteins. Meanwhile, the export machinery was dramatically handicapped and the cells lost viability. However, the folding-deficient hybrid proteins had a higher killing efficiency than the folding-proficient ones. Free DsbA'-truncated polypeptides, although not toxic, were processed more slowly when they could not fold into a protease-resistant form in the periplasmic space. This provides indications in E. coli for a direct or indirect influence of the folding of a protein in the periplasmic environment on export efficiency.  相似文献   

17.
DegP and DegQ are homologous endoproteases found in the periplasmic compartment of Escherichia coli. The studies presented here suggest that DegP and DegQ have very similar substrate specificities and cleave substrates which are transiently or globally denatured. Model substrates were cleaved at discrete Val/Xaa or Ile/Xaa sites, suggesting that aliphatic, beta-branched residues, which are typically buried in the hydrophobic core of most proteins, are important determinants of cleavage specificity. Indeed, the peptide bonds cleaved in the model substrates are generally inaccessible in the native three-dimensional structures. In addition, a chimeric fusion protein, which is a DegP substrate in vivo, is degraded in vitro only after reduction of its intramolecular disulfide bonds. Taken together, these findings suggest that DegP and DegQ may degrade transiently denatured proteins, unfolded proteins which accumulate in the periplasm following heat shock or other stress conditions, and/or newly secreted proteins prior to folding and disulfide bond formation. Cross-linking studies indicate that both DegP and DegQ form dodecamers in solution and thus are similar to many other intracellular proteases which form large oligomeric complexes.  相似文献   

18.
HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in?vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing). Biochemical analysis of DegQ dodecamers revealed that the major copurified protein substrate is OmpA. Importantly, wild-type DegQ exhibited a much lower proteolytic activity, and thus higher chaperone-like activity, than DegP. Furthermore, using cryo-electron microscopy we determined high-resolution structures of DegQ 12- and 24-mers in the presence of substrate, thus revealing the structural mechanism by which DegQ moderates its proteolytic activity.  相似文献   

19.
Facultative phototrophic bacterium Rhodobacter capsulatus DsbA-null mutants are proficient in photosynthesis but are defective in respiration especially in enriched growth medium at 35 degrees C. They also exhibit severe pleiotropic phenotypes extending from motility defects to osmofragility and oxidative stresses. In this work, using a combined proteomics and molecular genetics approach, we demonstrated that the respiratory defect of R. capsulatus DsbA-null mutants originates from the overproduction of the periplasmic protease DegP, which renders them temperature-sensitive for growth. The DsbA-null mutants reverted frequently to overcome this growth defect by decreasing, but not completely eliminating, their DegP activity. In agreement with these findings, we showed that overproduction of DegP abolishes the newly restored respiratory growth ability of the revertants in all growth media. Structural localizations of the reversion mutations in DegP revealed the regions and amino acids that are important for its protease-chaperone activity. Remarkably although R. capsulatus DsbA-null or DegP-null mutants were viable, DegP-null DsbA-null double mutants were lethal at all growth temperatures. This is unlike Escherichia coli, and it indicates that in the absence of DsbA some DegP activity is required for survival of R. capsulatus. Absence of a DegQ protease homologue in some bacteria together with major structural variations among the DegP homologues, including a critical disulfide bond-bearing region, correlates well with the differences seen between various species like R. capsulatus and E. coli. Our findings illustrate the occurrence of two related but distinct periplasmic protease families in bacterial species.  相似文献   

20.
The expression of assembly-defective outer membrane proteins can confer lethality if they are not degraded by envelope proteases. We report here that the expression of a mutant OmpC protein, OmpC(2Cys), which forms disulfide bonds in the periplasm due to the presence of two non-native cysteine residues, is lethal in cells lacking the major periplasmic protease, DegP. This lethality is not observed in dsbA strains that have diminished ability to form periplasmic disulfide bonds. Our data show that this OmpC(2Cys)-mediated lethality in a degP::Km(r) dsbA(+) background can be reversed by a DegP variant, DegP(S210A), that is devoid of its proteolytic activity but retains its reported chaperone activity. However, DegP(S210A) does not reverse the lethal effect of OmpC(2Cys) by correcting its assembly but rather by capturing misfolded mutant OmpC polypeptides and thus removing them from the assembly pathway. Displacement of OmpC(2Cys) by DegP(S210A) also alleviates the negative effect that the mutant OmpC protein has on wild-type OmpF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号