首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unusual glucocorticoid-responsive element (called GRE A) was found to mediate the induction of the cytosolic aspartate aminotransferase gene by glucocorticoids and was bound by the glucocorticoid receptor in a DNase I footprinting assay. GRE A consists of two overlapping GREs, each comprising a conserved half-site and an imperfect half-site. The complete unit was able to confer glucocorticoid inducibility to a heterologous promoter (delta MTV-CAT). Mutation of any of the half-sites, including the imperfect ones, abolished inducibility by the hormone, demonstrating that each of the isolated GREs was inactive. In electrophoretic mobility shift assays, purified rat liver glucocorticoid receptor (GR) formed a low-mobility complex with GRE A, presumably containing a GR tetramer. When purified bacterially expressed DBD was used, low-mobility complexes as well as dimer and monomer complexes were formed. In inactive mutated oligonucleotides, no GR tetramer formation was detected. Modification of the imperfect half-sites in order to increase their affinity for GR gave a DNA sequence that bound a GR tetramer in a highly cooperative manner. This activated unit consisting of two overlapping consensus GREs mediated glucocorticoid induction with a higher efficiency than consensus GRE.  相似文献   

2.
Bai Y  Kirigiti P  Li X  Li B  Tian L  Ma MY  Machida CA 《BioTechniques》2003,35(1):100-4, 106, 108-11
The rat beta 1-adrenergic receptor (beta 1-AR) gene contains glucocorticoid response element (GRE) half-sites at positions -2767 and -945. In electrophoretic mobility shift assay (EMSA) experiments, neither beta 1-AR GRE half-site recognized glucocorticoid receptors (GRs) obtained from baculovirus high-level expression systems or from mammalian cells. We have developed a sensitive UV cross-linking/immunoprecipitation assay, using a 524-bp fragment containing the prototypical GRE obtained from the rat tyrosine aminotransferase promoter sequence and using antibodies recognizing mammalian GR. Using this assay, we provide evidence that rat beta 1-AR gene sequences recognize mammalian GRs expressed in mouse 3T3 cells and that the site of GR interaction does not appear to specifically contain the beta 1-AR GRE half-sites. This represents one of the first reports demonstrating the utility of a UV cross-linking/immunoprecipitation assay in the detection of mammalian GR interaction with beta 1-AR sequences, is consistent with the lack of specific DNA-GR protein complexes observed in EMSA experiments using oligonucleotide probes containing the beta 1-AR GRE half-sites, and provides evidence that mammalian GR interaction occurs at complex rate beta 1-AR gene sequences.  相似文献   

3.
The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the consensus glucocorticoid response element (GRE) has been studied by two-dimensional 1H NMR spectroscopy. The DNA fragment is a 10 base-pair oligonucleotide, 5'd(GCTGTTCTGC)3'.5'd-(GCAGAACAGC)3', containing the stronger binding GRE half-site hexamer, with GC base pairs at each end. The 93-residue GR-DBD contains an 86-residue segment corresponding to residues 440-525 of the rat GR. Eleven NOE cross peaks between the protein and DNA have been identified, and changes in the chemical shift of the DNA protons upon complex formation have been analyzed. Using these protein-DNA contact points, it can be concluded that (i) the "recognition helix" formed by residues C460-E469 lies in the major groove of the DNA; (ii) the GR-DBD is oriented on the GRE half-site such that residues A477-D481, forming the so-called D-loop, are available for protein-protein interaction in the GR-DBD dimer on the intact consensus GRE; and (iii) the 5-methyl of the second thymine in the half-site and valine 462 interact, confirming indirect evidence [Truss et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7180-7184; Mader et al. (1989) Nature 338, 271-274] that both play an important role in GR-DBD DNA binding. These findings are consistent with the model proposed by H?rd et al. [(1990) Science 249, 157-160] and the X-ray crystallographic complex structure determined by Luisi et al. [(1991) Nature 352, 497-505].  相似文献   

4.
We have studied the interaction of the DNA-binding domain of the glucocorticoid receptor with a glucocorticoid response element from the tyrosine aminotransferase gene. This response element consists of two binding sites (half-sites) for the glucocorticoid receptor DNA-binding domain. The sequences of these two half-sites are not identical, and we have previously shown that binding occurs preferentially to one of the half-sites (Tsai, S.-Y., Carlstedt-Duke, J., Weigel, N. L., Dahlman, K., Gustafsson, J.-A., Tsai, M.-J., and O'Malley, B. W. (1988) Cell 55, 361-369). We show here that binding to the low affinity half-site is dependent on previous occupancy of the high affinity half-site. This facilitated binding is dependent on the distance between the two half-sites and their relative orientation but is not dependent on the integrity of the DNA backbone. This is consistent with a model where DNA binding is not only dependent on interactions between the protein and its DNA target sequence but is also influenced by interactions between the protein molecules bound.  相似文献   

5.
A steroid hormone responsive element (GRE/PRE), sufficient to confer glucocorticoid and progesterone inducibility when linked to a reporter gene, was used in band-shift assays to examine its molecular interactions with steroid hormone receptors. Both progesterone and glucocorticoid receptors bound directly and specifically to the GRE/PRE. The purine contact sites for both form A and form B chicken progesterone receptor, as well as those for rat glucocorticoid receptor, are identical. A peptide fragment produced in bacteria that primarily contain the DNA binding domain of the glucocorticoid receptor binds first to the TGTTCT half-site of the GRE/PRE, and a second molecule binds subsequently to the TGTACA (half-site) of the GRE/PRE in a cooperative manner. Utilizing the peptide fragment and the protein A-linked fragment, we demonstrated that the receptor interacts with its cognate enhancer as a dimer.  相似文献   

6.
The glucocorticoid receptor (GR) and the progestin receptor (PR) bind specifically to a variety of DNA sequences, glucocorticoid/progestin response elements (GRE/PRE), located in the proximity of responsive gene promoters. Using the isolated recombinant GR DNA-binding domain (DBD), it has recently been shown that GR interacts with the GRE/PRE, a 15-basepair partially palindromic consensus sequence, as a dimer. In this study an investigation into the GR-GRE/PRE and PR-GRE/PRE interaction has been performed using missing base contact analysis with the tyrosine aminotransferase GREII (TATII) and recombinant GR DBD as well as a fusion protein consisting of the PR DBD fused to Staph. aureus protein-A. GR and PR had identical base contact points, localized within two consecutive major grooves, binding to the same face of the DNA. Ethylation interference was also performed on the GR DBD-TATII interaction. The contact points with the backbone phosphate groups flank the contacts within the major groove for each of the two half-sites. Knowledge of the contact points within the DNA sequence together with the three-dimensional structure of the protein enables modelling of the protein-DNA interaction.  相似文献   

7.
We identified two thyroid hormone response elements (TREs) in the 2.5-kb, 5'-flanking region of the human gene encoding type 1 iodothyronine deiodinase (hdio1), an enzyme which catalyses the activation of thyroxine to 3,5,3'-triiodothyronine (T3). Both TREs contribute equally to T3 induction of the homologous promoter in transient expression assays. The proximal TRE (TRE1), which is located at bp -100, has an unusual structure, a direct repeat of the octamer YYRGGTCA hexamer that is spaced by 10 bp. The pyrimidines in the -2 position relative to the core hexamer are both essential to function. In vitro binding studies of TRE1 showed no heterodimer formation with retinoid X receptor (RXR) beta or JEG nuclear extracts (containing RXR alpha) and bacterially expressed chicken T3 receptor alpha 1 (TR alpha) can occupy both half-sites although the 3' half-site is dominant. T3 causes dissociation of TR alpha from the 5' half-site but increases binding to the 3' half-site. Binding of a second TR to TRE1 is minimally cooperative; however, no cooperativity was noted for a functional mutant in which the half-sites are separated by 15 bp, implying that TRs bind as independent monomers. Nonetheless, T3 still causes TR dissociation from the DR+15, indicating that dissociation occurs independently of TR-TR contact and that rebinding of a T3-TR complex to the 3' half-site occurs because of its slightly higher affinity. A distal TRE (TRE2) is found at bp -700 and is a direct repeat of a PuGGTCA hexamer spaced by 4 bp. It has typical TR homodimer and TR-RXR heterodimer binding properties. The TRE1 of hdio1 is the first example of a naturally occurring TRE consisting of two relatively independent octamer sequences which do not require the RXR family of proteins for function.  相似文献   

8.
9.
10.
11.
The Flp recombinase of Saccharomyces cerevisae and the related R recombinase of Zygosaccharomyces rouxii can efficiently catalyze strand cleavage and strand exchange reactions in half recombination sites. A half-site consists of one recombinase binding element, a recombinase cleavage site on one strand and a 5' spacer hydroxyl group on the other that can initiate the strand exchange reaction. We have studied the various types of strand exchanges that half-sites can participate in. Reaction between a left half-site and a right half-site generates a full recombination site. Strand transfer between two left half-sites or between two right half-sites produces pseudo-full-sites. Strand transfer within a half-site results in a stem-loop or hairpin product. The half-site strand transfer reaction is fairly indifferent to the spacer sequence of the substrate per se and is less sensitive to variations in spacer lengths than a full-site recombination reaction. The optimal spacer length of eight to ten nucleotides observed for the Flp half-site reaction likely permits the most productive catalytic interactions between two Flp monomers bound to each of two partner half-sites. When reacted with a full-site, the half-site can give rise to a normal or reverse recombinant, corresponding to homologous or non-homologous alignments of the spacer sequences during substrate synapsis. The contrary recombination (resulting from non-homologous spacer alignment), whose level is low relative to normal recombination, is partly suppressed when the half-site spacer ends in a 5'-phosphate rather than a 5'-hydroxyl group. Thus, the early steps of recombination, namely synapsis and initial stand transfer, are not dependent on complete spacer homology between the two recombining substrates. The selection of properly aligned substrate partners must occur at the homology dependent branch migration step. In reactions containing a mixture of Flp and R half-sites, Flp and R catalyze strand transfer, almost exclusively, within or between their respective cognate substrates. However, under conditions where self-crosses are inhibited, strand exchange between a Flp half-site and an R half-site appears to be stimulated by a combination of R and Flp.  相似文献   

12.
Anderson I  Gorski J 《Biochemistry》2000,39(13):3842-3847
Estrogen regulation of the rat prolactin gene requires sequences within the DNase I hypersensitive site II (HSII). We have used overexpressed mouse estrogen receptor alpha (ERalpha) protein to study interactions of ERalpha with an imperfect estrogen response element (ERE) and four ERE half-site sequences from HSII. We confirmed that ERalpha has higher affinity for ERE half-sites than for the imperfect ERE. As expected, the imperfect ERE formed a complex with ERalpha similar to that between mERalpha and a consensus ERE in gel shift assays. The ERalpha complex with half-sites, however, had faster mobility on a 4% polyacrylamide gel than the ERalpha complex with a consensus ERE, indicating that the complexes had different compositions. Ferguson analysis revealed that the ERalpha/half-site complex had a larger molecular weight and higher negative charge than the ERalpha/consensus ERE complex. Similar results were observed with purified human ERalpha, showing that the ERalpha/half-site complex contained only ERalpha and oligonucleotides. These results are best explained by a model in which a dimer of ERalpha is bound to two half-site oligonucleotides. We propose that two ERalpha dimers may interact with the four ERE half-sites in HSII to influence estrogen regulation of this gene.  相似文献   

13.
14.
15.
16.
How p53 binds DNA as a tetramer.   总被引:8,自引:1,他引:7       下载免费PDF全文
K G McLure  P W Lee 《The EMBO journal》1998,17(12):3342-3350
The p53 tumor suppressor protein is a tetramer that binds sequence-specifically to a DNA consensus sequence consisting of two consecutive half-sites, with each half-site being formed by two head-to-head quarter-sites (--><-- --><--). Each p53 subunit binds to one quarter-site, resulting in all four DNA quarter-sites being occupied by one p53 tetramer. The tetramerization domain forms a symmetric dimer of dimers, and two contrasting models have the two DNA-binding domains of each dimer bound to either consecutive or alternating quarter-sites. We show here that the two monomers within a dimer bind to a half-site (two consecutive quarter-sites), but not to separated (alternating) quarter-sites. Tetramers bind similarly, with the two dimers within each tetramer binding to pairs of half-sites. Although one dimer within the tetramer is sufficient for binding to one half-site in DNA, concurrent interaction of the second dimer with a second half-site in DNA drastically enhances binding affinity (at least 50-fold). This cooperative dimer-dimer interaction occurs independently of tetramerization and is a primary mechanism responsible for the stabilization of p53 DNA binding. Based on these findings, we present a model of p53 binding to the consensus sequence, with the tetramer binding DNA as a pair of clamps.  相似文献   

17.
18.
Determinants of target gene specificity for steroid/thyroid hormone receptors   总被引:84,自引:0,他引:84  
K Umesono  R M Evans 《Cell》1989,57(7):1139-1146
The molecular specificity of the receptors for steroid and thyroid hormones is achieved by their selective interaction with DNA binding sites referred to as hormone response elements (HREs). HREs can differ in primary nucleotide sequence as well as in the spacing of their dyadic half-sites. The target gene specificity of the glucocorticoid receptor can be converted to that of the estrogen receptor by changing three amino acids clustered in the first zinc finger. Remarkably, a single Gly to Glu change in this region produces a receptor that recognizes both glucocorticoid and estrogen response elements. Further replacement of five amino acids in the stem of the second zinc finger transforms the specificity to that of the thyroid hormone receptor. These findings localize structural determinants required for discrimination of HRE sequence and half-site spacing, respectively, and suggest a simple pathway for the coevolution of receptor DNA binding domains and hormone-responsive gene networks.  相似文献   

19.
We have employed fluorescence spectroscopy to study the chemical equilibrium between a 115 amino acid protein fragment containing the DNA-binding domain of the human glucocorticoid receptor (DBDr) and a 24-base-pair DNA oligomer containing the glucocorticoid response element (GRE) from the mouse mammary tumor virus promoter region and compared it with the binding to nonspecific DNA at various ionic conditions. We find that binding to both DNAs is cooperative but that DBDr shows a higher affinity for the GRE than for nonspecific DNA and that this difference is more pronounced at increased salt concentrations. Sequence-specific binding to the GRE sequence at 570 mM monovalent cations can be described by a two-site cooperative model, and this supports the notion that DBDr binding to the GRE is enhanced by dimer formation at the recognition site. The product between the (average) association constant for binding to a GRE half-site and the cooperativity parameter was estimated to be K omega = (1-4) x 10(7) M-1 at this salt concentration and 20 degrees C. The sequence-specific binding is not very sensitive to salt concentration in the interval 270-570 mM monovalent cations. However, at lower salt (70 mM) additional binding takes place, presumably nonspecific (cooperative) association to DNA adjacent to the GRE sequence. DBDr binding to nonspecific DNA can be described by the McGhee-von Hippel model for cooperative binding to a chain polymer and is very sensitive to ionic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号