首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates how noise reduction (road closure) mitigates the effect of traffic noise on the acoustic communication of the Eastern wood pewee (Contopus virens) (EAWP), a suboscine passerine. Songs were passively recorded at sites where the traffic pattern of the nearest road was either relatively constant or reduced on a weekly basis during a 36 h road closure. Five song attributes, low frequency traffic noise amplitude (LAeq) measured within 20 s of each song, and full-spectrum background noise levels (LAeq) characteristic of each territory were measured and analysed in order to better understand how EAWP respond to variation in traffic noise levels. EAWP adjusted its spectral song attributes by increasing song tonality to improve transmission in immediate response to fluctuations in traffic noise. The results suggest that song adjustments are responses to traffic noise levels at the time of their song, instead of the average background noise level measured per territory. This study provides a better understanding of how suboscine communication is affected by traffic noise, as well as the potential mitigating effect of noise reduction for animal acoustic communication.  相似文献   

2.
This study aimed to characterize the linguistic interference that occurs during speech-in-speech comprehension by combining offline and online measures, which included an intelligibility task (at a −5 dB Signal-to-Noise Ratio) and 2 lexical decision tasks (at a −5 dB and 0 dB SNR) that were performed with French spoken target words. In these 3 experiments we always compared the masking effects of speech backgrounds (i.e., 4-talker babble) that were produced in the same language as the target language (i.e., French) or in unknown foreign languages (i.e., Irish and Italian) to the masking effects of corresponding non-speech backgrounds (i.e., speech-derived fluctuating noise). The fluctuating noise contained similar spectro-temporal information as babble but lacked linguistic information. At −5 dB SNR, both tasks revealed significantly divergent results between the unknown languages (i.e., Irish and Italian) with Italian and French hindering French target word identification to a similar extent, whereas Irish led to significantly better performances on these tasks. By comparing the performances obtained with speech and fluctuating noise backgrounds, we were able to evaluate the effect of each language. The intelligibility task showed a significant difference between babble and fluctuating noise for French, Irish and Italian, suggesting acoustic and linguistic effects for each language. However, the lexical decision task, which reduces the effect of post-lexical interference, appeared to be more accurate, as it only revealed a linguistic effect for French. Thus, although French and Italian had equivalent masking effects on French word identification, the nature of their interference was different. This finding suggests that the differences observed between the masking effects of Italian and Irish can be explained at an acoustic level but not at a linguistic level.  相似文献   

3.
Measuring noise     
High levels of noise encountered both in leisure activities and at workplaces can be somewhat annoying, but they can also cause hearing damage. In order to lessen these risks, some physical characteristics of the sound phenomenon need to be understood. The level of a sound is given in dB, a logarithmic unit in which simple addition is not available : 100 dB + 100 dB = 103 dB. The highest level of noise which can be tolerated by the human ear is considered to be 120 dB. Another component of sound characteristics is the frequency, which describes the height of a sound. The frequency is given in Hz, the human hearing field is comprised in the range of 20 to 20,000 Hz. Regarding the sensitivity of the ear, depending on the frequency, acusticians use a weighed dB, called dB(A), which takes into account a lower risk to hearing below 500 Hz and above 6 kHz. They also integrate the energy measured during a period of time to take the fluctuation of usual noise levels into account. So that currently, the levels of noise are often given in LAeq (equivalent to the level of continuous noise given in dBA). For moderate levels of noise, another weighted filter is used in sound level meters : the C curve, because low frequencies, although they are less dangerous for the ear, are more disturbing. In every day life, we sometimes have noise levels reaching 100 dB, and even 120 dB (fire alarms). Amplified music can reach 110 dBA, but a French regulation limits the output of PCPs (Walkmans) to 100 dB and the levels in concerts and discotheques to 105 dBA. At the workplace, the maximum level of noise allowed by French Law is 90 dBA for an 8 hour exposure, and 140 dB for peaks. In order to improve the protection of all workers in the EC, a recent European Directive will decrease the maximum level to 87 dBA before March 2006.  相似文献   

4.
ObjectiveEarly environmental enrichment in life can improve cognition in animals. The effect of prenatal auditory stimulation on learning ability and fear level in chick embryos remained unexplored. Therefore, this study investigated the effect of prenatal auditory stimulation on the learning ability and fear level of chicks.MethodsA total of 450 fertilized eggs were randomly divided into 5 groups, including control group (C), low-sound intensity music group (LM), low-sound intensity noise group (LN), high-sound intensity noise group (HN) and high-sound intensity music group (HM). From the 10th day of embryonic development until hatching, group LM and group LN received 65 to 75 dB of music and noise stimulation. Group HN and group HM received 85 to 95 dB of noise and music stimulation, and group C received no additional sound. At the end of incubation, the one-trial passive avoidance learning (PAL) task and tonic immobility (TI) tests were carried out, and the serum corticosterone (CORT) and serotonin (5-HT) concentrations were determined.ResultsThe results showed that compared with the group C, 65 to 75 dB of music and noise stimulation did not affect the PAL avoidance rate (p>0.05), duration of TI (p>0.05) and the concentration of CORT (p>0.05) and 5-HT (p>0.05) in chicks. However, 85 to 95 dB of music and noise stimulation could reduce duration of TI (p<0.05) and the concentration of CORT (p<0.05), but no significant effect was observed on the concentration of 5-HT (p>0.05) and PAL avoidance rate (p>0.05).ConclusionTherefore, the prenatal auditory stimulation of 85 to 95 dB can effectively reduce the fear level of chicks while it does not affect the learning ability.  相似文献   

5.
BackgroundRoad traffic noise is a prevalent and known health hazard. However, little is known yet about its effect on children’s cognition. We aimed to study the association between exposure to road traffic noise and the development of working memory and attention in primary school children, considering school-outdoor and school-indoor annual average noise levels and noise fluctuation characteristics, as well as home-outdoor noise exposure.Methods and findingsWe followed up a population-based sample of 2,680 children aged 7 to 10 years from 38 schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back task, detectability), complex working memory (3-back task, detectability), and inattentiveness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic noise was measured indoors and outdoors at schools, at the start of the school year, using standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual average levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for classroom orientation and classroom change between years. Home-outdoor noise exposure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated using Barcelona’s noise map for year 2012, according to the European Noise Directive (2002). We used linear mixed models to evaluate the association between exposure to noise and cognitive development adjusting for age, sex, maternal education, socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution (TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home models. Child and school were included as nested random effects.The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3) years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to road traffic noise was associated with a slower development in working memory (2-back and 3-back) and greater inattentiveness over 1 year in children, both for the average noise level (e.g., ‒4.83 points [95% CI: ‒7.21, ‒2.45], p-value < 0.001, in 2-back detectability per 5 dB in street levels) and noise fluctuation (e.g., ‒4.38 [‒7.08, ‒1.67], p-value = 0.002, per 50 noise events at street level). Individual exposure to the road traffic average noise level in classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050, per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes. Home-outdoor noise exposure was not associated with the outcomes. Study limitations include a potential lack of generalizability (58% of mothers with university degree in our study versus 50% in the region) and the lack of past noise exposure assessment.ConclusionsWe observed that exposure to road traffic noise at school, but not at home, was associated with slower development of working memory, complex working memory, and attention in schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident than with average noise levels in classrooms.

In a cohort study, Maria Foraster and colleagues study associations between exposure to road traffic noise at schools, and trajectories of working memory and inattentiveness among schoolchildren aged 7 to 10 years in Barcelona, Spain.  相似文献   

6.
为探讨噪音刺激对中缅树鼩行为、学习记忆和氧化应激的影响,将中缅树鼩在噪音0 dB、40 dB和80 dB条件下持续刺激8h,连续28 d,测定其体重、摄食量、Y型迷宫正确反应率和行为变化,并测定脑中丙二醛(Malondialdehyde,MDA)、超氧化物歧化酶(Superoxide dismutase,SOD)、乙酰...  相似文献   

7.
噪声对海马CA3区神经元电活动及突触超微结构的影响   总被引:6,自引:0,他引:6  
本文用电生理学方法及电镜技术研究105dB(A)白噪声对海马CA3区神经元电活动及突触超微结构的影响。结果表明:大鼠在强噪声暴露期间(5min),其神经元放电出现减频反应(占53.3%),增频反应(占20%)和基本无反应(占26.7%)。而强噪声定时重复暴露(每天1h共50天)后,单位放电频率极显著地低于对照组,以及高频单位消失而低频单位增加;同时,突触超微结构(大鼠和豚鼠)也出现小泡不集中于突触前膜和线粒体空泡化增多等不利于突触功能的变化。表明强噪声对海马CA3区神经元的影响是明显的,且以抑制性作用更为显著。本文结合本室以往工作进行讨论,认为噪声影响学习功能可能有通过影响海马的活动而作用的机制。  相似文献   

8.
During sleep, in thermoneutral conditions, the noise of a passing vehicle induces a biphasic cardiac response, a transient peripheral vasoconstriction and sleep disturbances. The present study was performed to determine whether or not the physiological responses were modified in a hot environment or after daytime exposure to both heat and noise. Eight young men were exposed to a nocturnal thermoneutral (20 degrees C) or hot (35 degrees C) environment disturbed by traffic noise. During the night, the peak intensities were of 71 dB(A) for trucks, 67 dB(A) for motorbikes and 64 dB(A) for cars. The background noise level (pink noise) was set at 30 dB(A). The noises were randomly distributed at a rate of 9.h-1. Nights were equally preceded by daytime exposure to combined heat and noise or to no disturbance. During the day, the noises as well as the background noise levels were increased by 15 dB(A) and the rate was 48.h-1. Electroencephalogram (EEG) measures of sleep, electrocardiograms and finger pulse amplitudes were continuously recorded. Regardless of the day condition, when compared with undisturbed nights, the nocturnal increase in the level of heart rate induced by heat exposure disappeared when noise was added. Percentages, delays, magnitudes and costs of cardiac and vascular responses as well as EEG events such as transient activation phases (TAP) due to noise were not affected by nocturnal thermal load or by the preceding daytime exposure to disturbances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
人类活动产生的噪声污染对动物和人类的影响正受到日益增多的关注。本文以雄性成年金色中仓鼠为实验动物模型,探讨了北京市主干道交通噪声对其焦虑行为及血象、应激生理的影响。分别以北京主干道噪声(80±10 dB SPL)暴露为实验组,实验室环境噪声(50±4 dB SPL)暴露为对照组,噪声处理动物1小时后进行旷场行为学测试,然后取血对比观测两组鼠血液学指标和应激响应、抗氧化酶活性等生理指标的变化。结果显示道路交通噪声没有导致仓鼠出现明显的焦虑行为;不过,实验组血小板数显著低于对照组(P = 0.044),其他血象指标两组间差异不显著;噪声对血清皮质醇,谷丙、谷草转氨酶影响不显著;实验组的血清谷胱甘肽过氧化物酶(GSH-Px)活性极显著低于对照组(P < 0.001),但超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、总抗氧化能力 (TAOC) 和丙二醛(MDA)水平两组间差异不显著;血清溶菌酶活性实验组降低较明显,接近显著水平(P = 0.0507)。我们的结果显示道路交通噪声胁迫导致了金色中仓鼠血象指标发生了变化,这提示北京市主干道交通噪声刺激对金色中仓鼠生理功能产生了一定的副作用。  相似文献   

10.
This study was undertaken to investigate the dose-response relationship between the biological effect and noise exposure, and to consider the mechanism of the appearance of noise effects. Rats were exposed to noise at intensities of 60 dB (A), 80 dB (A) and 100 dB (A) for 240 min and examined for the change of activities of dopamine-beta-hydroxylase (DBH) in serum and adrenal glands. Plasma cyclic adenosine 3',5'-monophosphate (c-AMP) levels were also measured. Some rats were given 6-hydroxydopamine (6-OHDA) as a chemical sympathectomyzing agent 20 h before noise exposure in order to consider the mechanism of the appearance of noise effects. By noise exposure, serum DBH activity was significantly (P less than 0.01) increased at each intensity compared with the control group, but there were no remarkable changes in adrenal DBH activity. Plasma c-AMP level was also significantly elevated in response to the noise stress. When the rats, which had been pretreated with 6-OHDA, were exposed to noise with an intensity of 100 dB (A), the response of serum DBH activity was no longer observed. Therefore it is suggested that the effect due to noise exposure appears through the post-ganglionic sympathetic nerve fiber.  相似文献   

11.
The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.  相似文献   

12.

Background

Hearing thresholds of fishes are typically acquired under laboratory conditions. This does not reflect the situation in natural habitats, where ambient noise may mask their hearing sensitivities. In the current study we investigate hearing in terms of sound pressure (SPL) and particle acceleration levels (PAL) of two cichlid species within the naturally occurring range of noise levels. This enabled us to determine whether species with and without hearing specializations are differently affected by noise.

Methodology/Principal Findings

We investigated auditory sensitivities in the orange chromide Etroplus maculatus, which possesses anterior swim bladder extensions, and the slender lionhead cichlid Steatocranus tinanti, in which the swim bladder is much smaller and lacks extensions. E. maculatus was tested between 0.2 and 3kHz and S. tinanti between 0.1 and 0.5 kHz using the auditory evoked potential (AEP) recording technique. In both species, SPL and PAL audiograms were determined in the presence of quiet laboratory conditions (baseline) and continuous white noise of 110 and 130 dB RMS. Baseline thresholds showed greatest hearing sensitivity around 0.5 kHz (SPL) and 0.2 kHz (PAL) in E. maculatus and 0.2 kHz in S. tinanti. White noise of 110 dB elevated the thresholds by 0–11 dB (SPL) and 7–11 dB (PAL) in E. maculatus and by 1–2 dB (SPL) and by 1–4 dB (PAL) in S. tinanti. White noise of 130 dB elevated hearing thresholds by 13–29 dB (SPL) and 26–32 dB (PAL) in E. maculatus and 6–16 dB (SPL) and 6–19 dB (PAL) in S. tinanti.

Conclusions

Our data showed for the first time for SPL and PAL thresholds that the specialized species was masked by different noise regimes at almost all frequencies, whereas the non-specialized species was much less affected. This indicates that noise can limit sound detection and acoustic orientation differently within a single fish family.  相似文献   

13.
经强噪声重复暴露(96 dB,2h/d,25 d)后,幼年和老年大鼠在条件反应的建立和再建立过程中,其海马CA_3区习得性长时程突触增强(LTP)的发展均受到明显阻抑,相应地动物达到学会标准需更多的训练。但幼年鼠受阻抑的程度更为严重。对习得性LTP的消退则在幼年和老年大鼠均无明显影响。本研究从突触功能的可塑性方面揭示幼年功物特别容易受到强噪声重复暴露的危害,提示应重视环境噪声对人类婴幼儿脑功能的损害作用的研究。  相似文献   

14.
环境噪声影响动物的活动及其叫声特性,已成为动物面对的一种重要选择压力。为应对噪声的干扰,多数动物类群会远离噪声区域和改变其叫声的频谱时间结构,如延长叫声持续时间、提高叫声频率等,但有些动物的活动和叫声频谱时间结构并不受环境噪声的影响。本研究在自然条件下,研究不同环境噪声强度对蝙蝠活动和回声定位声波的影响。选取噪声强度有差异的12个样点,分别录制各样点大卫鼠耳蝠、西南鼠耳蝠、亚洲长翼蝠及未知蝙蝠的回声定位声波,分析其持续时间、起始频率、峰频、终止频率和带宽,统计蝙蝠通过次数。回归分析结果显示:环境噪声强度与大卫鼠耳蝠、西南鼠耳蝠、亚洲长翼蝠及未知蝙蝠的活动无显著相关性P > 0.05),与回声定位声波的脉冲持续时间、起始频率、峰频、终止频率及带宽均不显著相关(P > 0.05)。暗示低频低强度(< 20 kHz, < 67.5 dB)的环境噪声可能对高频回声定位蝙蝠的叫声及活动没有显著影响。  相似文献   

15.
Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG) study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords) or were foreign (Korean words), with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise.  相似文献   

16.
弱噪声对小鼠下丘神经元频率调谐的影响   总被引:6,自引:1,他引:5  
为探讨弱噪声对小鼠 (MusmusculusKm)中脑下丘 (inferiorcolliculus ,IC)神经元声信号提取的影响 ,采用单位胞外记录方法 ,研究了加入弱白噪声 (强度相当于纯音阈强度下 5dB)前后神经元频率调谐曲线的变化。实验共记录到 10 4个下丘神经元 ,测量了 32个神经元的频率调谐曲线。结果显示 :①弱噪声条件下神经元的频率调谐曲线表现出 3种类型 ,即锐化 (34 4 % ,11/ 32 )、拓宽 (18 8% ,6 / 32 )和不受影响 (4 6 9% ,15 / 32 ) ,其中锐化呈现有意义的变化 ;②频率调谐受弱噪声锐化的神经元 ,其Q10 、Q3 0 平均分别增大 (34 4 2±17 0 4 ) % (P =0 0 2 6 ,n =11)和 (4 6 34± 2 2 88) % (P =0 0 0 9,n =7) ,且Q3 0 变化率大于Q10 ;③弱噪声对调谐曲线的高、低频边锐化度不一 ,神经元低频边的反转斜率基本不变 [由 0 16± 0 0 8变为 0 16± 0 0 7kHz/dB (P =0 94 7,n =7) ],而高频边明显下降 [由 0 5 2± 0 2 5下降为 0 2 6± 0 13kHz/dB ,平均减小 (4 3 81±2 4 0 6 ) % ,(P =0 0 4 6 ,n =7) ]。上述结果表明 ,弱噪声可锐化小鼠IC神经元频率调谐 ,并强化神经元的声信号高频分析能力  相似文献   

17.
Schmidt AK  Römer H 《PloS one》2011,6(12):e28593

Background

Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured.

Principal Findings

Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three ‘bottom-up’ mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of −8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about −23 dB compared with those in the laboratory with the same masker, where SNRs reached only −14.5 and −16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals.

Conclusions

Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated.  相似文献   

18.
目的:探究短时间内低声级强度低频的变压器噪声暴露对SD大鼠听力及应激状态方面的影响。方法:选取90只SPF级健康无听力障碍的(雌雄各半)SD大鼠作为实验对象,随机分为实验A、B组和对照C组,A、B组分别给予声级上限为65 dB SPL、60 dB SPL(频谱范围:100~800 Hz)的变压器噪声,噪声暴露时程为8周,每日噪声给予时间为22点至次日8点,C组在相同条件下饲养,不给予噪声暴露。噪声暴露结束后,通过DPOAE(畸变耳声发射)、ABR(听性脑干反应)检测、耳蜗铺片及毛细胞计数对SD大鼠听力学状况进行评估;通过血清中促肾上腺皮质激素(ACTH)、血清皮质醇(CORT)对SD大鼠的应激状态进行评估。结果:在变压器噪声暴露的8周内,各组大鼠生长状况良好,体重均呈正常生理性增长,组间无明显差异(P0.05);在变压器噪声暴露8周后,对A、B、C三组大鼠的听力学指标进行两两比较,组间均无明显差异(P0.05),对大鼠血清中促肾上腺皮质激素(ACTH)、血清皮质醇(CORT)的含量进行三组间比较,组间差异均无统计学意义(P0.05)。结论:连续暴露于声压级上限65/60 dB SPL,频谱范围为100~800 Hz的变压器噪声下8周(10小时/天)对SD大鼠听力未产生明显影响,未引发SD大鼠应激状态。  相似文献   

19.
The effects of night-time exposure to traffic noise (TN) or low frequency noise (LFN) on the cortisol awakening response and subjective sleep quality were determined. Twelve male subjects slept for five consecutive nights in a noise-sleep laboratory. After one night of acclimatisation and one reference night, subjects were exposed to either TN (35dB L(Aeq), 50dB L(Amax)) or LFN (40dB L(Aeq)) on alternating nights (with an additional reference night in between). Salivary free cortisol concentration was determined in saliva samples taken immediately at awakening and at three 15-minute intervals after awakening. The subjects completed questionnaires on mood and sleep quality. The awakening cortisol response on the reference nights showed a normal cortisol pattern. A significant interaction between night time exposure and time was found for the cortisol response upon awakening. The awakening cortisol response following exposure to LFN was attenuated at 30 minutes after awakening. Subjects took longer to fall asleep during exposure to LFN. Exposure to TN induced greater irritation. Cortisol levels at 30 minutes after awakening were related to "activity" and "pleasantness" in the morning after exposure to LFN. Cortisol levels 30 minutes after awakening were related to sleep quality after exposure to TN. This study thus showed that night time exposure to LFN may affect the cortisol response upon wake up and that lower cortisol levels after awakening were associated with subjective reports of lower sleep quality and mood.  相似文献   

20.
Anthropogenic noise (≤ 3 kHz) can affect key features of birds’ acoustic communication via two different processes: (1) song‐learning, because songbirds need to hear themselves and other birds to crystallize their song, and (2) avoidance of song elements that overlap with anthropogenic noise. In this study we tested whether anthropogenic noise reduces the number of song elements in the repertoire of House Wren Troglodytes aedon, an urban species. Additionally, we tested whether the proportion of high‐frequency elements (i.e. elements where the minimum frequency is above 3 kHz) is related to anthropogenic noise levels, and how the frequencies and duration of shared elements between males change with different levels of anthropogenic noise. We recorded 29 House Wren males exposed to different anthropogenic noise levels (36.50–79.50 dB) during two consecutive breeding seasons from four locations. We recorded each male on 2 days during each season continuously for 50 min (we collected 104 h of recordings) and measured anthropogenic noise levels every 10 min inside each male territory during the recording period. In general, individuals inhabiting noisier territories had smaller repertoires. However, only in two locations with anthropogenic noise levels between 38.60 and 79.50 dB did males inhabiting noisier territories have smaller repertoires. In the other two locations with lower anthropogenic noise (36.50–66.50 dB), the anthropogenic noise inside each territory was not related to the repertoire size. Individuals inhabiting the noisiest location showed a tendency to include more high‐frequency elements in their songs. In 26% of the elements, the anthropogenic noise affected their frequency features. Our results showed that not all House Wrens inhabiting urban environments modify their songs at the highest level of organization (i.e. repertoire) to reduce the masking effect of anthropogenic noise on acoustic communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号