首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DJ-1 is a novel oncogene and causative gene for familial form of the Parkinson's disease (PD). DJ-1 has been shown to play a role in anti-oxidative stress by eliminating reactive oxygen species (ROS). The onset of PD is thought to be caused by oxidative stress and mitochondrial injury, which leads to protein aggregation that results in neuronal cell death. However, the mechanism by which DJ-1 triggers the onset of PD is still not clear. In this study, we analyzed association and localization of DJ-1 and its mutants with various chaperones. The results showed that DJ-1 and its mutants were associated with Hsp70, CHIP and mtHsp70/Grp75, a mitochondria-resident Hsp70, and that L166P and M26I mutants found in PD patients were strongly associated with Hsp70 and CHIP compared to wild-type and other DJ-1 mutants. DJ-1 and its mutants were colocalized with Hsp70 and CHIP in cells. Furthermore, association and colocalization of wildtype DJ-1 with mtHsp70 in mitochondria were found to be enhanced by treatment of cells with H2O2. These results suggest that translocation of DJ-1 to mitochondria after oxidative stress is carried out in association with chaperones.  相似文献   

4.
DJ-1 is a ubiquitously expressed protein involved in various cellular processes including cell proliferation, RNA-binding, and oxidative stress. Mutations that result in loss of DJ-1 function lead to early onset parkinsonism in humans, and DJ-1 protein is present in pathological lesions of several tauopathies and synucleinopathies. In order to further investigate the role of DJ-1 in human neurodegenerative disease, we have generated novel polyclonal and monoclonal antibodies to human DJ-1 protein. We have characterized these antibodies and confirmed the pathological co-localization of DJ-1 with other neurodegenerative disease-associated proteins, as well as the decrease in DJ-1 solubility in disease tissue. In addition, we report the presence of DJ-1 in a large molecular complex (> 2000 kDa), and provide evidence for an interaction between endogenous DJ-1 and alpha-synuclein in normal and diseased tissue. These findings provide new avenues towards the study of DJ-1 function and how loss of its activity may lead to parkinsonism. Furthermore, our results provide further evidence for the interplay between neurodegenerative disease-associated proteins.  相似文献   

5.
Mutations in DJ-1 lead to early onset Parkinson's disease (PD). The aim of this study was to elucidate further the underlying mechanisms leading to neuronal cell death in DJ-1 deficiency in vivo and determine whether the observed cell loss could be prevented pharmacologically. Inactivation of DJ-1 in zebrafish, Danio rerio, resulted in loss of dopaminergic neurons after exposure to hydrogen peroxide and the proteasome inhibitor MG132. DJ-1 knockdown by itself already resulted in increased p53 and Bax expression levels prior to toxin exposure without marked neuronal cell death, suggesting subthreshold activation of cell death pathways in DJ-1 deficiency. Proteasome inhibition led to a further increase of p53 and Bax expression with widespread neuronal cell death. Pharmacological p53 inhibition either before or during MG132 exposure in vivo prevented dopaminergic neuronal cell death in both cases. Simultaneous knockdown of DJ-1 and the negative p53 regulator mdm2 led to dopaminergic neuronal cell death even without toxin exposure, further implicating involvement of p53 in DJ-1 deficiency-mediated neuronal cell loss. Our study demonstrates the utility of zebrafish as a new animal model to study PD gene defects and suggests that modulation of downstream mechanisms, such as p53 inhibition, may be of therapeutic benefit.  相似文献   

6.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Although the precise mechanism remains unclear, mounting evidence suggests that oxidative stress plays an important role in the pathogenesis of PD. DJ-1 gene is associated with oxidative stress and mutations in DJ-1 are involved in an autosomal recessive, early onset familial form of PD. The ERK1/2 signaling pathway contributes to neuroprotection during oxidative stress. However, the correlation between DJ-1 and the ERK1/2 signaling pathway remains unknown. To test for an association of DJ-1 with the ERK1/2 signaling pathway, we transfected wild-type and L166P mutated DJ-1 into COS-7 and MN9D cells. The results showed that over-expression of WT-DJ-1 dramatically enhanced the phosphorylation of ERK1/2 and its upstream kinase MEK1/2. Meanwhile, WT-DJ-1, but not L166P-DJ-1 inhibited the expression of protein phosphatase 2A (PP2A), an inhibitor of the ERK1/2 signaling pathway. Moreover, over-expression of WT-DJ-1 increased cell viability and decreased cell sensitivity to H2O2-induced neurotoxicity. Inhibition of the ERK1/2 signaling pathway with a MEK1/2 inhibitor reversed these changes. We conclude that DJ-1 does affect the ERK1/2 signaling pathway and change the susceptibility of cells to oxidative stress.  相似文献   

7.
The role of autophagy as a survival strategy of cells constitutes an emerging topic in the study of the pathogenesis of several diseases with autophagic changes being described in a number of age-related neurodegenerative disorders, including Parkinson's disease (PD). Although the etiology of PD is still unknown, both environmental (for example, paraquat exposure) and genetic factors have been investigated as putative causes of the disease. In the latter case, mutations or changes in the protein DJ-1 have been reported to be associated with autosomal recessive, early-onset parkinsonism. In this paper we established a model system to study the involvement of the DJ-1 protein in paraquat-induced autophagy. When human neuroblastoma SH-SY5Y cells were transfected with DJ-1-specific small interfering RNAs and exposed to paraquat, we observed (i) sensitization additive with paraquat-induced apoptotic cell death, (ii) inhibition of the cytoplasmic accumulation of autophagic vacuoles as well as the recruitment of LC3 fusion protein to the vacuoles, (iii) exacerbation of apoptotic cell death in the presence of the autophagy inhibitor 3-methyladenine, and (iv) an increase in mammalian target of rapamycin phosphorylation. Taken together, these findings suggest an active role for DJ-1 in the autophagic response produced by paraquat, providing evidence for the role of PD-related proteins in the autophagic degradation pathway, a factor that should be considered in the design of potential therapies for the treatment of the disease.  相似文献   

8.
DJ-1在细胞内主要以可溶性二聚体的形式存在于细胞浆、线粒体及细胞核,由于其基因突变可导致常染色体隐性遗传帕金森病(PD)的早发,DJ-1被公认是一种PD相关蛋白.PD发病与氧化应激密切相关,DJ-1可能主要通过感受氧化应激、调节转录,以及参与调控AKT、ASK等重要凋亡信号通路来最终实现神经细胞抗凋亡作用.  相似文献   

9.
10.
11.
3-Morpholinosyndnomine (SIN-1) has been reported to be a peroxynitrite (OONO(-)) donor because it produces both nitric oxide (NO) and superoxide (O(2)(-).) upon decomposition in aqueous solution. However, SIN-1 can decompose to primarily NO in the presence of electron acceptors, including those found in biological tissues, making it necessary to determine the release product(s) formed in any given biological system. In a mixed cortical cell culture system, SIN-1 caused a concentration-dependent increase in cortical cell injury with a parallel increase in the release of cellular proteins containing 3-nitrotyrosine into the culture medium. The increase in 3-nitrotyrosine immunoreactivity, a footprint of OONO(-) production, was specific for SIN-1 as exposure to neurotoxic concentrations of an NO donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl) aminodiazen-1-ium-1,2-diolate (DETA/NO), or NMDA did not result in the nitration of protein tyrosine residues. Both SIN-1-induced injury and 3-nitrotyrosine staining were prevented by the addition of either 5,10,15,20-Tetrakis (4-sulfonatophenyl) prophyrinato iron (III) [FeTPPS], an OONO(-) decomposition catalyst, or uric acid, an OONO(-) scavenger. Removal of NO alone was sufficient to inhibit the formation of OONO(-) from SIN-1 as well as its cytotoxicity. Removal of O(2)(-). and the subsequently formed H(2)O(2) by superoxide dismutase (SOD) plus catalase likewise prevented the nitration of protein-bound tyrosine but actually enhanced the cytotoxicity of SIN-1, indicating that cortical cells can cope with the oxidative but not the nitrosative stress generated. Finally, neural injury induced by SIN-1 in unadulterated cortical cells was prevented by antagonism of AMPA/kainate receptors, while blockade of the NMDA receptor was without effect. In contrast, activation of both NMDA and non-NMDA receptors contributed to the SIN-1-mediated neurotoxicity when cultures were exposed in the presence of SOD plus catalase. Thus, whether SIN-1 initiates neural cell death in an OONO(-)-dependent or -independent manner is determined by the antioxidant status of the cells. Further, the mode of excitotoxicity by which injury progresses is determined by the NO-related species generated.  相似文献   

12.
DJ-1 has been reported to have chaperone activity by preventing the aggregation of some proteins, and by structural analogy to Hsp31. The L166P mutation has been linked to a familial early onset form of Parkinson's disease (PD). Since the aggregation of alpha-synuclein is believed to be a critical step in the etiology of PD, we have investigated the interaction of wild-type DJ-1 and its oxidized forms with alpha-synuclein. Native (unoxidized) DJ-1 did not inhibit alpha-synuclein fibrillation, and no evidence for stable interactions between alpha-synuclein and native DJ-1 was observed. However, DJ-1 is very susceptible to oxidation by the addition of two oxygen atoms to form the sulfinic acid of Cys106 (2O DJ-1) (no 1O oxidized state is detectable). 2O DJ-1 was readily prepared by the addition of H(2)O(2) at concentrations up to a 20-fold molar excess. The oxidation of Cys106 to the sulfinic acid had minimal effect on the structural properties of DJ-1. However, 2O DJ-1 was very effective in preventing the fibrillation of alpha-synuclein, and only this form of DJ-1 appears to have significant anti-aggregation properties against alpha-synuclein. Further oxidation of DJ-1 leads to loss of some secondary structure, and to loss of the ability to inhibit alpha-synuclein fibrillation. Our observations confirm the suggestion that DJ-1 may act as an oxidative-stress-induced chaperone to prevent alpha-synuclein fibrillation. Since oxidative stress has been associated with PD, this observation may explain why mutations of DJ-1 could be a contributing factor in PD, and also indicates that excess oxidative stress could also lead to enhanced alpha-synuclein aggregation and hence PD.  相似文献   

13.
14.
The outer mitochondrial membrane protein VDAC interacts with the ER protein IP3R via chaperone Grp75 to form a molecular complex that couples mitochondria to the ER and contributes to functional mitochondria-ER contacts (MERCs), essential for efficient calcium (Ca2+) transfer. A new study by Liu et al. identifies the PD protein DJ-1 as a component of the IP3R-Grp75-VDAC complex. DJ-1 ablation impairs mitochondria-ER association and Ca2+ crosstalk, and impacts the stability of the trio.  相似文献   

15.
16.
Parkinson disease (PD)- and cancer-associated protein, DJ-1, mediates cellular protection via many signaling pathways. Deletions or mutations in the DJ-1 gene are directly linked to autosomal recessive early-onset PD. DJ-1 has potential roles in mitochondria. Here, we show that DJ-1 increases its mitochondrial distribution in response to ultraviolet B (UVB) irradiation and binds to Bcl-X(L). The interactions between DJ-1 and Bcl-X(L) are oxidation-dependent. DJ-1(C106A), a mutant form of DJ-1 that is unable to be oxidized, binds Bcl-X(L) much less than DJ-1 does. Moreover, DJ-1 stabilizes Bcl-X(L) protein level by inhibiting its ubiquitination and degradation through ubiquitin proteasome system (UPS) in response to UVB irradiation. Furthermore, under UVB irradiation, knockdown of DJ-1 leads to increases of Bcl-X(L) ubiquitination and degradation upon UVB irradiation, thereby increasing mitochondrial Bax, caspase-3 activation and PARP cleavage. These data suggest that DJ-1 protects cells against UVB-induced cell death dependent on its oxidation and its association with mitochondrial Bcl-X(L).  相似文献   

17.
Mutations in DJ-1 gene have been linked to autosomal recessive early onset parkinsonism (AR-EOP). Although the mechanism of neuronal cell death due to DJ-1 mutation has not been fully elucidated, loss of DJ-1 function was considered to cause the phenotype. Here, we demonstrated that the down regulation of endogenous DJ-1 of the neuronal cell line by siRNA enhanced the cell death which was induced by oxidative stress, ER stress, and proteasome inhibition, but not by pro-apoptotic stimulus. The cell death with hydrogen peroxide was dramatically rescued by over-expression of wild-type DJ-1, but not by that of L166P mutant DJ-1. Furthermore, DJ-1 rescued the cell death caused by over-expression of Pael receptor, which was a substrate of Parkin, another gene product for autosomal recessive juvenile parkinsonism. These results suggest that loss of protective activity of DJ-1 from neuro-toxicity induced by these stresses contributes to neuronal cell death in AR-EOP with mutant DJ-1.  相似文献   

18.
19.
Pancreatic and duodenal homeobox 1 (PDX1) regulates pancreatic development and mature β-cell function. We demonstrate by mass spectrometry that serine residue at position 269 in the C-terminal domain of PDX1 is phosphorylated in β-cells. Besides we show that the degree of phosphorylation, assessed with a phospho-Ser-269-specific antibody, is decreased by elevated glucose concentrations in both MIN6 β-cells and primary mouse pancreatic islets. Homeodomain interacting protein kinase 2 (HIPK2) phosphorylates PDX1 in vitro; phosphate incorporation substantially decreases in PDX1 S269A mutant. Silencing of HIPK2 led to a 51 ± 0.2% decrease in Ser-269 phosphorylation in MIN6 β-cells. Mutation of Ser-269 to phosphomimetic residue glutamic acid (S269E) or de-phosphomimetic residue alanine (S269A) exerted no effect on PDX1 half-life. Instead, PDX1 S269E mutant displayed abnormal changes in subnuclear localization in response to high glucose. Our results suggest that HIPK2-mediated phosphorylation of PDX1 at Ser-269 might be a regulatory mechanism connecting signals generated by changes in extracellular glucose concentration to downstream effectors via changes in subnuclear localization of PDX1, thereby influencing islet cell differentiation and function.  相似文献   

20.
The present work examines the effect of membrane lipid composition on activation of extracellular signal-regulated protein kinases (ERK) and cell death following oxidative stress. When subjected to 50 microM docosahexaenoic acid (DHA, 22 : 6 n-3), cellular phospholipids of OLN 93 cells, a clonal line of oligodendroglia origin low in DHA, were enriched with this polyunsaturated fatty acid. In the presence of 1 mM N,N-dimethylethanolamine (dEa) a new phospholipid species analog was formed in lieu of phosphatidylcholine. Exposure of DHA-enriched cells to 0.5 mM H2O2, caused sustained activation of ERK up to 24 h. At this time massive apoptotic cell death was demonstrated by ladder and TUNEL techniques. H2O2-induced stress applied to dEa or DHA/dEa co-supplemented cells showed only a transient ERK activation and no cell death after 24 h. Moreover, while ERK was rapidly translocated into the nucleus in DHA-enriched cells, dEa supplements completely blocked ERK nuclear translocation. This study suggests that H2O2-induced apoptotic cell death is associated with prolonged ERK activation and nuclear translocation in DHA-enriched OLN 93 cells, while both phenomena are prevented by dEa supplements. Thus, the membrane lipid composition ultimately modulates ERK activation and translocation and therefore can promote or prevent apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号