首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plant lipid was isolated from zucchini (Cucurbita pepo L.) membranes and from soybean (Glycine max [L.] Merr) phospholipids by thinlayer chromatography and further purified by high-performance liquid chromatography. This plant lipid was chromatographically very similar to the platelet-activating factor, an ether phospho-lipid with hormone-like properties found in mammals. Both the plant lipid and the platelet-activating factor stimulated ATP-dependent H+ transport in isolated membrane vesicles from zucchini hypocotyls.Abbreviations HPLC high-performance liquid chromatography - PAF platelet-activating factor  相似文献   

2.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA enzyme-linked immunosorbent assay - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T.  相似文献   

3.
Large-scale preparations of highly purified tonoplast and plasma-membrane vesicles were obtained from roots (garden cress, Lepidium sativum L.) and shoots (etiolated zucchini hypocotyl, Cucurbita pepo L.) of representative dicotyledonous seedlings. When tonoplast-enriched fractions of cress roots were prepared by centrifugation and then subjected to free-flow electrophoresis a highly purified tonoplast fraction was obtained. This fraction from cress roots was characterized by morphometry of filipin-treated freeze-fractured preparations and by enzymology to be about 90% homogeneous. Using latency of nitrate-inhibited ATPase and H+-pumping as criteria we found that the majority of the tonoplast vesicles from both sources were oriented right(cytoplasmic)-side-out. Plasma-membrane vesicles were first purified by two-phase partitioning and then subjected to free-flow electrophoresis for further purification. From cress roots, the fraction of highest purity contained 89% plasma-membrane vesicles as judged by morphometry of filipin-treated, freeze-fractured preparations and by enzymology. From both sources, the major plasma-membrane subfraction in the upper phase after two-phase partitioning was shown to have the least electrophoretic mobility in free-flow electrophoresis and to be oriented right(extracytoplasmic)-side-out a slightly more mobile plasma-membrane subfraction was oriented inside-out and originated after freezing thawing from outside-out plasma-membrane vesicles.Part of the doctoral thesis (D5) of B. vom DorpWe thank the Bundesministerium für Forschung und Technologie for financial support.  相似文献   

4.
A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H+-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H+ pump was directly demonstrated. The H+ pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K+-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because -mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DES dethyltilbestrol  相似文献   

5.
6.
Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.  相似文献   

7.
Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP3/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA. This work was supported by grants Wa463/9–5 and GRK837 from the Deutsche Forschungsgemeinschaft.  相似文献   

8.
Summary In order to isolate tonoplast and plasma membrane vesicles involved in ATP-dependent proton transport we devised a preparative procedure with two consecutive centrifugations. Three fractions were obtained on a sucrose step gradient: light microsomes, heavy microsomes, and a mitochondria-rich fraction. The light and heavy microsomal fractions were each recentrifuged on an isopycnic glycerol density gradient. Recentrifugation of light microsomes resulted in two fractions with H+-ATPase activity, one equilibrating at a density less than 1.11 g/cm3 and one equilibrating at a density of about 1.17g/cm3. Comparison with marker enzyme activities suggests that the upper fraction was enriched in tonoplast, and the dense fraction with plasma membrane. In addition to marker enzyme content, H+ transport in the H+-ATPase-containing fractions was further characterized with respect to pH dependence, cation and anion dependence, and uncouplers and inhibitors. H+ transport in all fractions was strongly dependent on the presence of halides but no specific stimulation by potassium or any other monovalent cation was found. Of the anions tested, malate and fumarate preferentially stimulated H+ transport in the tonoplast-enriched fraction. It is suggested that a Ca2+/H+ antiporter is present in all fractions. Only H+-ATPase in the plasma membrane-enriched fractions was sensitive to nystatin, an uncoupler, and to orthovanadate, an inhibitor. The tonoplast fraction was more sensitive to nitrate than the plasma membrane-enriched fraction, and all fractions showed some sensitivity to high concentrations of oligomycin. Oligomycin sensitivity was not due to the presence of mitochondria.  相似文献   

9.
In situ plasma membrane H+-ATPase activity was monitored during pH-regulated dimorphism of Candida albicans using permeabilized cells. ATPase activity was found to increase in both the bud and germ tube forming populations at 135 min which coincides with the time of evagination. Upon reaching the terminal phenotype the mycelial form exhibited higher H+-ATPase activity as compared to the yeast form. At the time of evagination H+-efflux exhibited an increase. K+ depletion resulted in attenuated ATPase activity and glucose induced H+-efflux. The results demonstrate that ATPase may play a regulatory role in dimorphism of C. albicans and K+ acts as a modulator.Abbreviations PM Plasma membrane - pHi intracellular pH - Pi inorganic phosphorus - TET Toluene: Ethanol: Triton X-100  相似文献   

10.
Shi Y  An L  Zhang M  Huang C  Zhang H  Xu S 《Protoplasma》2008,232(3-4):173-181
Summary. As the outermost boundary of the cell, the plasma membrane plays an important role in determining the stress resistance of organisms. To test this concept in a cryophyte, we analyzed alterations of several components in plasma membranes isolated from suspension-cultured cells of Chorispora bungeana Fisch. & C.A. Mey in response to treatment at 0 and −4 °C for 192 h. When compared with the controls growing at 25 °C, both the membrane permeability and fluidity showed recovery after the initial impairment. Linolenic acid and membrane lipid unsaturation increased by about 0.8-fold following cold treatments, although the kinetics of the increase varied with the temperatures examined. During the treatments, the plasma membrane H+-ATPase (EC 3.6.1.3) activity increased by 78.06% at 0 °C and 100.47% at −4 °C. However, the plasma membrane NADH oxidase (EC 1.6.99.3) activity only decreased when exposed to a lower temperature (−4 °C), and remained at 63.93% after being treated for 192 h. After the treatments, the physical properties of the plasma membranes of suspension-cultured cells, especially the −4 °C treated cells, were similar to those in the wild plants. These findings indicate that the specific mechanism of cold resistance of C. bungeana is tightly linked with the rapid and flexible regulation of membrane lipids and membrane-associated enzymes, which ensure the structural and functional integrity of the plasma membrane that is essential for withstanding low temperature. Correspondence: Lizhe An, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China.  相似文献   

11.
The relationship between the physiological characteristics and changes in the activities of H+ pumps of the plasma membrane and tonoplast of characean cells is discussed. The large size of the characean internodal cells allows us to perform various experimental operations. The intracellular perfusion technique developed by Tazawaet al. (1976) is a powerful tool for analyzing the characteristics and control mechanisms of the H+ pumps (Tazawa and Shimmen 1987, Tazawaet al. 1987, Shimmenet al. 1994) Respiration-dependent changes in the activity of the plasma membrane H+ pump are explained by changes in the supply of energy substrate. Photosynthesis-dependent changes in activities of both the plasma membrane and the tonoplast H+ pumps are explained in terms of changes in the level of inorganic phosphate in the cytoplasm. Cytoplasmic and vacuolar pHs are suggested to be controlling factors forin vivo activities of the H+ pumps. Furthermore, the membrane potential and various ions are considered to bein vivo factors that regulate the activities of the H+ pumps. Recipient of the Botanical Society Award of Young Scientists, 1993.  相似文献   

12.
Summary In the yeast Saccharomyces cerevisiae, the pma1 mutations confers vanadate-resistance to H+-ATPase activity when measured in isolated plasma membranes. In vivo, the growth of pma1 mutants is resistant to Dio-9, ethidium bromide and guanidine derivatives. This phenotype was used to man the pma1 mutation adjacent to LEU1 gene on chromosome VII. From a cosmid library of a wild-type Saccharomyces cerevisiae genome, a large 30 kb DNA fragment was isolated by complementation of a leu1-pma1 double mutant. A 5 kb HindIII fragment was subcloned and it restored both Leu+ and Pma+ phenotypes after integrative transformation. The restriction map of the 5 kb HindIII fragment and Southern blot analysis reveal that the cloned fragment contains the entire structural gene for the plasma membrane ATPase and the 5 end of the adjacent LEU1 gene. The pma1 mutation conferring vanadate-resistance is thus located in the structural gene for the plasma membrane ATPase.Publication no 2456 from the Biology Directorate of the Commission of European Communities  相似文献   

13.
The effect of an in vivo and in vitro treatment with cadmium on transport activities of root plasma membrane enriched vesicles was studied in oat (Avena sativa L. cv. Argentina) plants. Addition of 100 mumol/L CdSO4 to nutrient solution decreases both proton transport activity and ATPase activity to the same level. In vitro experiments show that cadmium seems to have a differential inhibiting effect on proton transport activity and ATPase activity, the most pronounced one on ATP-dependent H(+)-accumulation, suggesting that cadmium would interfere with membrane permeability properties. This is indeed the case. The results demonstrate that cadmium decreases passive permeability to protons.  相似文献   

14.
The plasma membrane H+-ATPase provides the driving force for solute transport via an electrochemical gradient of H+ across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H+-ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H+-ATPase (pT H+-ATPase) and non-pT H+-ATPase as in the green algae, and that pT H+-ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H+-ATPase genes, designated PpHA (Physcomitrella patens H+-ATPase). Six isoforms are the pT H+-ATPase; a remaining isoform is non-pT H+-ATPase. An apparent 95-kD protein was recognized by anti-H+-ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H+-ATPase. Furthermore, we could not detect the pT H+-ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H+-ATPase most likely appeared for the first time in bryophyte.  相似文献   

15.
When plasma-membrane vesicles isolated from oat (Avena sativa L.) root cells were incubated with [-32P]ATP, the H+-ATPase was found to be phosphorylated at serine and threonine residues. Phosphotyrosine was not detected. Endogenous ATPase kinase activity was also observed in plasma-membrane vesicles isolated from potato (Solanum tuberosum L.) root cells as well as from yeast (Saccharomyces cerevisiae). Identity of the phosphorylated oat root Mr=100 000 polypeptide as the ATPase was confirmed using conventional glycerol density-gradient centrifugation to purify the native enzyme and by a new procedure for purifying the denatured polypeptide using reversephase high-performance liquid chromatography. Kinase-mediated phosphorylation of the oat root plasma-membrane H+-ATPase was stimulated by the addition of low concentrations of Ca2+ and by a decrease in pH, from 7.2 to 6.2. These results demonstrate that kinase-mediated phosphorylation of the H+-ATPase is a plausible mechanism for regulating activity. They further indicate that changes in the cytoplasmic [Ca2+] and pH are potentially important elements in modulating the kinase-mediated phosphorylation.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mr relative molecular mass - RP-HPLC reverse-phase high-performance liquid chromatography - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

16.
17.
Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80 mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H+-ATPase. However, there was no effect of NaCl on water permeability (Pf) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H+-ATPase activity, thereby helping to reduce partially the Na+ concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H+-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.  相似文献   

18.
The effects of osmotic stress on H+-ATPase and H+-PPase activities and the levels of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) were investigated using tonoplast vesicles isolated from the roots of wheat (Triticum aestivum L.) seedlings differing in drought-tolerance. The results showed that after polyethylene glycol (PEG) 6,000 (–0.55MPa) treatment for 7 days, seedling leaf relative water content (LRWC), relative dry weight increase rate (RDWIR) and root H+-ATPase and H+-PPase activities from the drought-sensitive cultivar Yangmai No. 9 decreased more markedly than those from the drought-tolerant cultivar Yumai No. 18. At the same time, the increase of the NCC-spermidine (NCC-Spd) and CC-putrescine (CC-Put) levels in root tonoplast vesicles from Yumai No. 18 was more obvious than that from Yangmai No. 9. Exogenous Spd treatment alleviated osmotic stress injury to Yangmai No. 9 seedlings, coupled with marked increases of tonoplast NCC-Spd levels and H+-ATPase and H+-PPase activities. Treatments with methylglyoxyl bis (guanyl hydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), and phenanthrolin, an inhibitor of transglutaminase (TGase), significantly inhibited the osmotically induced increases of NCC-Spd and CC-Put levels, respectively, in root tonoplast vesicles from Yumai No. 18 seedlings. Both MGBG and phenanthrolin treatments markedly promoted osmotically induced decreases of tonoplast H+-ATPase and H+-PPase activities and osmotic stress tolerance of seedlings of this cultivar. These results suggest that the NCC-Spd and CC-Put present in tonoplast vesicles isolated from wheat seedling roots might enhance the adaptation of seedlings to osmotic stress via maintenance of tonoplast H+-ATPase and H+-PPase activities.  相似文献   

19.
Summary An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is hypothesized that the membrane potential is determined by an electrogenic H+-ATPase with a variable H+/ATP stoichiometry. The stoichiometry shifts from a value of two in the dark to a value of one in the light. Moreover, this H+ pump shows the characteristics of either a pump or a passive H+ conductance: the mode of operation of the H+ translocator is considered to be regulated by the external pH. The pump conductance is assumed to be dominant at low or neutral pH, while the passive H+ conductance becomes more significant at alkaline pH. The pH dependence of the transport characteristic is expressed by protonation reactions in the plasma membrane. The proposed model can account for most features of the light-induced oscillations but not for the absolute level of the membrane potential.This research was supported by the Foundation of Biophysics, part of the Dutch Organization for Scientific Research (NWO) ECOTRANS publication No. 34.  相似文献   

20.
The proton pumping activity of phase-partitioning purified plasma membrane fraction from spinach leaves was tested in vitro in the presence of exogenous indole-3-acetic acid. The sensitivity of the H+ pumping activity to the auxin was changed after flowering induction. We investigated the effect of whole spinach leaf treatments with substances affecting the phosphatidylinositol diphosphate transduction pathway on the in vitro sensitivity modification by photoperiodic induction. A role of calcium ions was supported by studies on leaves treated with a specific Ca2+ chelator (EGTA), a synthetic Ca2+ ionophore (A23187) or with calcium channel blokers (verapamil, lanthan chloride). An experiment using the transduction pathway inhibitor, lithium chloride, indicated that the intracellular concentration of Ca2+ was increased by inositol triphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号