首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.  相似文献   

2.
In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.  相似文献   

3.
Some trypanosomatids, such as Angomonas deanei formerly named as Crithidia deanei, present an obligatory intracellular bacterium, which maintains a mutualistic relationship with the host. Phosphatidylcholine (PC) is the major phospholipid in eukaryotes and an essential component of cell membranes playing structural, biochemical, and physiological roles. However, in prokaryotes, PC is present only in those species closely associated with eukaryotes, either in symbiotic or pathogenic interactions. In trypanosomatids, the endosymbiont envelope is composed by a reduced cell wall and by two membrane units that lack sterols and present cardiolipin (CL) and PC as the major phospholipids. In this study, we tested the effects of miltefosine in A. deanei proliferation, as well as, on the ultrastrucuture and phospholipid composition considering that this drug inhibits the CTP-phosphocholine cytidyltransferase (CCT), a key enzyme in the PC biosynthesis. Besides the low effect of miltefosine in cellular proliferation, treated protozoa presented ultrastructural alterations such as plasma membrane shedding and blebbing, mitochondrial swelling, and convolutions of the endosymbiont envelope. The use of (32) Pi as a tracer revealed that the production of PC, CL, and phosphatidylethanolamine decreased while phosphatidylinositol production remained stable. Mitochondrion and symbiont fractions obtained from protozoa treated with miltefosine also presented a decrease in phospholipid production, reinforcing the idea that an intensive metabolic exchange occurs between the host trypanosomatid and structures of symbiotic origin.  相似文献   

4.
Blastocrithidia culicis and Crithidia deanei are trypanosomatids that harbor an endosymbiotic bacterium in their cytoplasm. In prokaryotes, numerous proteins are essential for cell division, such as FtsZ, which is encoded by filament-forming temperature-sensitive (fts) genes. FtsZ is the prokaryotic homolog of eukaryotic tubulin and is present in bacteria and archaea, and has also been identified in mitochondria and chloroplasts. FtsZ plays a key role in the initiation of cytokinesis. It self-assembles into the Z ring, which establishes the division plane during septation. In this study, immunoblotting analysis using a FtsZ polyclonal antibody, revealed a 40-kDa band characteristic of FtsZ in endosymbiont fractions and in whole trypanosomatid homogenates, but not in whole cell extracts of aposymbiotic strains. Confocal microscopy and ultrastructural analysis revealed a specific and dispersed labeling over the endosymbiont. Bars and ring-like structures, which are suggestive of the presence of Z-rings, were never observed, even during the division of the symbiont. This peculiar distribution of FtsZ may represent an arrangement of cytoskeleton protein intermediate between prokaryotic and eukaryotic cells. The endosymbiont ftsz gene was completely sequenced after amplification of DNA from symbiont-bearing trypanosomatids or from pure endosymbiont fractions, using PCR and specific primers. The sequences obtained from the endosymbionts from C. deanei and B. culicis were very similar, and were most closely related to bacteria from the genus Pseudomonas.  相似文献   

5.
The present study demonstrates that the endosymbiont of Crithidia deanei influences the expression of surface gp63 molecules. Ultrastructural immunocytochemical analysis shows the presence of the gp63-like protein in the protozoan flagellum and flagellar pocket, either attached to shed membranes or in a free form. This molecule is glycosylphosphatidylinositol (GPI) anchored to the plasma membrane as demonstrated by phospholipase C (PLC) treatment and cross-reacting determinant detection by immunoblotting. The gp63 molecule mediates the adhesive process of the protozoan to Aedes aegypti explanted guts, since the binding was reduced by pre-incubating the C. deanei parasites (wild and aposymbiotic strains) with anti-gp63 antibodies, PLC or PLC followed by anti-gp63 antibodies incubation. In addition, the number of wild C. deanei bound to A. aegypti explanted guts was twice as that of aposymbiotic parasites. Flow cytometry assays revealed that the reactivity of the wild strain with anti-gp63 antibodies was approximately twice as that of the aposymbiotic strain. We may conclude that higher expression of surface gp63 by the wild strain of C. deanei may positively influence this interaction, posing a prominent advantage for the endosymbiont-containing trypanosomatids.  相似文献   

6.
For a vast majority of living organisms, haem is an essential compound that is synthesised through a conserved biosynthetic pathway. However, certain organisms are haem auxotrophs and need to obtain this molecule from exogenous sources. Kinetoplastid flagellates represent an interesting group of species, as some of them lost the complete pathway while others possess only the last three biosynthetic steps. We decided to supplement a current view on the phylogeny of these important pathogens with the expected state of haem synthesis in representative species. We propose a scenario in which the ancestor of all trypanosomatids was completely deficient of the synthesis of haem. In trypanosomatids other than members of the genus Trypanosoma, the pathway was partially rescued by genes encoding enzymes for the last three steps, supposedly obtained by horizontal transfer from a γ-proteobacterium. This event preceded the diversification of the non-Trypanosoma trypanosomatids. Later, some flagellates acquired a β-proteobacterial endosymbiont which supplied them with haem precursors. On the other hand, the medically important trypanosomes have remained fully deficient of haem synthesis and obtain this compound from the host.  相似文献   

7.
Crithidia deanei from the reduviid hemipteron, Zelus leucogrammus, unlike most lower trypanosomatids cultivated in defined medium, required only 2 amino acids, methionine and tyrosine; only 4 vitamins, folic acid, thiamine, biotin, and nicotinamide; and neither hemin nor a purine source. Electron microscopy reveals an endosymbiont, probably bacterial, which presumably provides the other basic trypanosomatid essential nutrients.  相似文献   

8.
Any actual understanding of trypanosomatids in general requires a comprehensive analysis of the less-specialized species as thorough as our knowledge of the more specialized Leishmania and Trypanosoma. In this context, we have shown by antibody cross-reactivity that purified extracellular metallopeptidases from Phytomonas fran?ai, Crithidia deanei (cured strain) and Crithidia guilhermei share common epitopes with the leishmanial gp63. Flow cytometry and fluorescence microscopy analyses indicated the presence of gp63-like molecules on the cell surface of these lower trypanosomatids. Binding assays with explanted guts of Aedes aegypti incubated with purified gp63 and the pretreatment of trypanosomatids with anti-gp63 antibodies indicated that the gp63-like molecules are involved in the adhesive process of these trypanosomatids to the A. aegypti gut wall. In addition, our results indicate for the first time that the gp63-like molecule binds to a polypeptide of 50 kDa on the A. aegypti gut epithelium extract.  相似文献   

9.
《PloS one》2013,8(4)
Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.  相似文献   

10.
Blastocrithidia culicis and Crithidia deanei are trypanosomatid protozoa of insects that normally contain intracellular symbiotic bacteria. The protozoa can be rid of their endosymbionts by antibiotics, producing a cured cell line. Here, we analyzed the glycoconjugate profiles of endosymbiont-harboring and cured strains of B. culicis and C. deanei by Western blotting and flow cytometry analyses using lectins that recognize specifically sialic acid and mannose-like residues. The absence of the endosymbiont increased the intensity of the lectins binding on both trypanosomatids. In addition, wild and cured strain-specific glycoconjugate bands were identified. The role of the surface saccharide residues on the interaction with explanted guts from Aedes aegypti gut was assessed. The aposymbiotic strains of B. culicis and C. deanei presented interaction rates 3.3- and 2.3-fold lower with the insect gut, respectively, when compared with the endosymbiont-bearing strains. The interaction rate of sialidase-treated cells of the wild and cured strains of B. culicis and C. deanei was reduced in at least 90% in relation to the control. The interaction of B. culicis (wild strain) with explanted guts was inhibited in the presence of mucin (56%), fetuin (62%), sialyllactose (64%) and alpha-methyl-D-mannoside (80%), while in C. deanei (wild strain) the inhibition was 53%, 56%, 79% and 34%, respectively. Collectively, our results suggest a possible involvement of sialomolecules and mannose-rich glycoconjugates in the interaction between insect trypanosomatids and the invertebrate host.  相似文献   

11.
The endosymbiont-bearing trypanosomatids present a typical kDNA arrangement, which is not well characterized. In the majority of trypanosomatids, the kinetoplast forms a bar-like structure containing tightly packed kDNA fibers. On the contrary, in trypanosomatids that harbor an endosymbiotic bacterium, the kDNA fibers are disposed in a looser arrangement that fills the kinetoplast matrix. In order to shed light on the kinetoplast structural organization in these protozoa, we used cytochemical and immunocytological approaches. Our results showed that in endosymbiont-containing species, DNA and basic proteins are distributed not only in the kDNA network, but also in the kinetoflagellar zone (KFZ), which corresponds to the region between the kDNA and the inner mitochondrial membrane nearest the flagellum. The presence of DNA in the KFZ is in accordance with the actual model of kDNA replication, whereas the detection of basic proteins in this region may be related to the basic character of the intramitochondrial filaments found in this area, which are part of the complex that connects the kDNA to the basal body. The kinetoplast structural organization of Bodo sp. was also analyzed, since this protozoan lacks the highly ordered kDNA-packaging characteristic of trypanosomatid and represents an evolutionary ancestral of the Trypanosomatidae family.  相似文献   

12.
Species of trypanosomatids without endosymbionts (Leptomonas seymouri, L. collosoma, L. samueli, Crithidia fasciculata, C. luciliae, C. acanthocephali, Herpetomonas megaseliae, H. mariadeanei, H. samuelpessoai, H. muscarum muscarum, Trypanosoma cruzi) and species of trypanosomatids with endosymbionts (Crithidia deanei, C. oncopelti, Blastocrithidia culicis) were comparatively studied by means of electron microscopy. Artificially aposymbiotic strains derived from species with symbiont were also included in the survey. Species with symbiont were found to differ in some ultrastructural aspects from the group of species without symbiont. Paraxial rods of flagella or intraflagellar structure were found exclusively in species without symbiont. Peripheral branching of mitochondria, accompanied by absence of subpellicular microtubules in sites where the mitochondrial branches are appressed to the cell membrane, were found exclusively in species with symbiont. Networks of kinetoplast DNA fibrils were found to be larger and looser in species with symbiont. Symbiont-free strains of species with symbiont retained the same morphological characteristics of their parental species.  相似文献   

13.
From 10 trypanosomatids genera six comprise monogenetic parasites of insects and for the rest of four genera insects may serve as vectors. The invertebrate host is an essential element of trypanosomatids life cycle, but from more than 900 recognised vertebrate hosts only about 500 species of insects have been discovered to be the hosts of homoxenous trypanosomatids. Nothing or very little is known about insect trypanosomatids in many extensive areas such as South East Asia, Australia, Japan and some others. Each new region explored brings many new findings. Recently flagellates were found in new insect species and families. The border of parasites distribution was expanded till Central Asia, Far East and North over the Polar Circle. As paleogeographical events are now under contemplating in trypanosomatids phylogeny researches so northern insect trypanosomatids may attract some attention as the elements of postglacial fauna which is definitely young. Very broad host specificity of insect trypanosomatids and high probability to isolate non-specific parasite show causes that only the investigation of a culture may solve the question 'what parasite was really isolated?'. Examination of cell morphotypes in the host has clearly demonstrated that they are not sufficient for classification and may lead us to be mistaken. The number of insect trypanosomatid cultures is inadequate for characterisation of the diversity of insects trypanosomatids. Trypanosoma is actually the only trypanosomatid genus which is out of questions. Insect trypanosomatids comprise the most diversified part of trypanosomatids evolutionary tree. Recent ssrRNA phylogenetic analysis and morphological data show that three insect isolates represent new lineages on trypanosomatid evolutionary tree, as well as dendrograms derived from PCR data demonstrated some new groups of isolates. Therefore, the more insect trypanosomatids are involved in laboratory investigations--the more new clusters or/and new lineages are appearing on the tree.  相似文献   

14.
An investigation of transmission and ecology of the monogenetic trypanosomatids, Blastocrithidia gerridis and Crithidia flexonema , in Gerris is described. Motile free-living flagellates of both species were found in the faeces of Gerris and in the water on which the bugs inhabited. Transmission of both trypanosomatid species occurred from naturally infected wild-caught bugs to flagellate-free laboratory-bred bugs via water. Crithidia flexonema was also transmitted to laboratory-bred bugs after being isolated in culture. Observations of experimentally infected bugs indicate that C. flexonema flagellates are imbibed and pass through the fore- and midgut to the hindgut where they become attached and multiply. There was no evidence to suggest transovarial transmission. In a 3-yr investigation into the prevalence of trypanosomatids in a natural population of adult Gerris odontogaster , it was found that the infection rate varied between 19% and 100%. There was no significant difference in infection rates between females and males. The infection rate peaked for each year in late spring or early summer. The significance of these results is discussed in relation to the ecology and behaviour of Gerris . The results indicate that the infections are maintained in hibernating bugs over winter.  相似文献   

15.
The results of comparative analysis of two phylogenetic trees of the trypanosomatids based on morphological and molecular characters are discussed. The morphological dendrogram was based on 33 ultrastructural characters, 6 light microscope characteristics and 8 biological characters. Molecular UPGMA dendrogram depicting differences (Dice distance) between examined trypanosomatids is based on the universally primed PCR polymorphisms. The general topology of both dendrograms are similar, with the Trypanosoma at the base. The genus Wallaceina appears to be monophyletic. In a contrary, the genera Leptomonas, Crithidia and Herpetomonas look like artificial groups according to both methods used. The cyst-forming homoxenous trypanosomatids from insects represent a monophyletic clade, which seems to be a separate genus. Two species of within genus Wallaceina are arranged as a separate subgenus.  相似文献   

16.
An investigation of transmission and ecology of the monogenetic trypanosomatids, Blastocrithidia gerridis and Crithidia flexonema, in Gerris is described. Motile free-living flagellates of both species were found in the faeces of Gerris and in the water on which the bugs inhabited. Transmission of both trypanosomatid species occurred from naturally infected wild-caught bugs to flagellate-free laboratory-bred bugs via water. Crithidia flexonema was also transmitted to laboratory-bred bugs after being isolated in culture. Observations of experimentally infected bugs indicate that C. flexonema flagellates are imbibed and pass through the fore- and midgut to the hindgut where they become attached and multiply. There was no evidence to suggest transovarial transmission. In a 3-yr investigation into the prevalence of trypanosomatids in a natural population of adult Gerris odontogaster, it was found that the infection rate varied between 19% and 100%. There was no significant difference in infection rates between females and males. The infection rate peaked for each year in late spring or early summer. The significance of these results is discussed in relation to the ecology and behaviour of Gerris. The results indicate that the infections are maintained in hibernating bugs over winter.  相似文献   

17.
Wolbachia are obligate intracellular bacteria which commonly infect arthropods. They are maternally inherited and capable of altering host development, sex determination, and reproduction. Reproductive manipulations include feminization, male-killing, parthenogenesis, and cytoplasmic incompatibility. The mechanism by which Wolbachia avoid destruction by the host immune response is unknown. Generation of antimicrobial peptides (AMPs) and reactive oxygen species (ROS) by the host are among the first lines of traditional antimicrobial defense. Previous work shows no link between a Wolbachia infection and the induction of AMPs. Here we compare the expression of protein in a cell line naturally infected with Wolbachia and an identical cell line cured of the infection through the use of antibiotics. Protein extracts of each cell line were analyzed by two dimensional gel electrophoresis and LC/MS/MS. Our results show the upregulation of host antioxidant proteins, which are active against ROS generated by aerobic cell metabolism and during an immune response. Furthermore, flow cytometric and microscopic analysis demonstrates that ROS production is significantly greater in Wolbachia-infected mosquito cells and is associated with endosymbiont-containing vacuoles located in the host cell cytoplasm. This is the first empirical data supporting an association between Wolbachia and the insect antioxidant system.  相似文献   

18.
In order to verify the applicability of biochemical methods for species identification of Trypanosomatidae, 13 species of monoxenic trypanosomatids plus the heteroxenous Trypanosoma cruzi were comparatively analyzed by three different biochemical methods. Insect trypanosomatids examined were: Crithidia acanthocephali, C. fasciculata (three varieties), C. luciliae luciliae, C. luciliae thermophila, C. deanei, C. oncopelti, Herpetomonas muscarum muscarum, H. megaseliae, H. samuelpessoai, H. mariadeanei, Leptomonas seymouri, L. collosoma, L. samueli, and Blastocrithidia culicis. Also included in the survey were aposymbiotic strains of C. deanei and C. oncopelti. Methods used were: electrophoretic profiling of endonuclease-generated fragments of k-DNA, esterase isoenzymes profiling, and polyacrylamide-gel electrophoresis (SDS-PAGE) of radioiodinated cell surface proteins. Interspecific but not intraspecific differences were detected by all three methods among the 13 monoxenic species examined. Thus, it is concluded that these methods can be successfully used, in addition to classical criteria, for species identification of insect trypanosomatids.  相似文献   

19.
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.  相似文献   

20.
Trypanosomatids are widespread in several plant families and although most isolates have been classified as Phytomonas, other trypanosomatid genera can also infect plants. In order to assess the natural occurrence of non-Phytomonas trypanosomatids in plants we characterized 21 new trypanosomatid cultures, 18 from fruits and three from seeds of 17 plant species. The trypanosomatids from fruit and seeds were compared in terms of morphological, growth, biochemical and molecular features. The high diversity among the isolates permitted the classification of the new flagellates into the genera Crithidia and Leptomonas as well as Phytomonas. The data showed that natural fruit infection with non-Phytomonas trypanosomatids is more common than usually thought, being detected in 43% of the fruit isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号