首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve cell bodies and fibers displaying Substance P-like (SP-li) immunoreactivity have been identified in the pedal ganglia (PG) of Mytilus galloprovincialis. Most reactive neurons are small-sized, unipolar and are located in the ganglionic cortex. Positive fibers form a dense network in the neuropile and run parallel in the commissure and in the nerves and connective tracts. The positivity of the labelled elements to a monoclonal antibody indicates that SP-li substance of Mytilus contains a portion immunologically similar to the C-terminal pentapeptide responsible for the pharmacological activity of vertebrate SP.  相似文献   

2.
Summary A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles.Within the central ganglia many neurones, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata.Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

3.
A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles. Within the central ganglia many neurons, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata. Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

4.
Summary Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

5.
Substance P-like immunoreactivity in the nervous system of hydra   总被引:3,自引:0,他引:3  
Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

6.
The distribution of galanin-like immunoreactivity in various regions of the central nervous system was assessed in three mammalian species, pig, rat, and human, by radioimmunoassay. Galanin concentrations were highest in the hypothalamus and pituitary region. In spinal cord, there was a rostrocaudal/dorsoventral gradient with highest levels observed in the sacral dorsal horn. Serial dilutions of porcine tissue extracts diluted parallel to the porcine standard curve, while the rat and human tissue extracts did not. In all tissues examined by high pressure liquid chromatography, the principal peak of immunoreactivity coeluted with the authentic porcine galanin standard and was decreased by trypsin cleavage. These results suggest a role for galanin in the central nervous system and support species differences in the structure of galanin.  相似文献   

7.
The precursors for neurotrophins are proteolytically cleaved to form biologically active mature molecules which activate their receptors p75NTR and trks. A recent study showed that the precursor for nerve growth factor (NGF) can bind to p75NTR with a high affinity and induces apoptosis of neurons in vitro. Mutation in Val66Met of brain-derived neurotrophic factor (BDNF) results in reduction in hippocampal function in learning and in the dysfunction of intracellular BDNF sorting and secretion. To examine the functions of pro-neurotrophins in vivo, it is essential to know where they are expressed in the nervous system. In the present study, we have raised and characterized rabbit polyclonal antibodies against a peptide coding for the precursor region of the BDNF gene. The antibody specifically recognizes the precursor for BDNF by western blot. With the affinity purified precursor antibody, we have mapped the distribution and localization of the precursor for BDNF. The results showed that, like mature BDNF, pro-BDNF is localized to nerve terminals in the superficial layers of dorsal horn, trigeminal nuclei, nuclei tractus solitarius, amygdaloid complex, hippocampus, hypothalamus and some peripheral tissues. These results suggest that pro-BDNF, like mature BDNF, is anterogradely transported to nerve terminals and may have important functions in synaptic transmission in the spinal cord and brain.  相似文献   

8.
9.
Lamins are the major proteic constituents of the nuclear lamina, the innermost layer of the nuclear membrane. The immunolocalization of lamins in the rat central nervous system was studied using polyclonal antibodies. Besides an ubiquitarious localization in the nuclear membranes of neurons and glial cells, an intense lamin-like immunoreactivity was found in the soma and dendrites of cerebellar Purkinje cells. The same specific reaction was also observed in the human cerebellum. Experiments performed in newborn animals demonstrated that the cytoplasmic expression of lamins in Purkinje cells begins during postnatal development.  相似文献   

10.
The distribution of neurotensin-like immunoreactivity was investigated in the central nervous system of the Formosan monkey employing immunohistochemical techniques. Neurotensin-containing cells were found to be widely distributed in the forebrain. The principal densities of neurotensin-like neuronal perikarya were located in the limbic system, the basal ganglion and the cerebral cortex; particularly in the amygdala, the septum, the neostriatum, the claustrum and the insula. The stria terminalis and the preoptic area were also rich in immunostained neurotensin-like neurons. A large number of immunoreactive fibers were observed from the cerebral cortex to the spinal cord in locations such as the median eminence, the arcuate nucleus, the hippocampus, the central gray and the dorsal horn of the spinal cord. We analyzed in detail the distribution of neurotensin-like immunoreactivity in the brain of the Formosan monkey, and compared these results with those obtained in the brain of the rat, Japanese monkey and human. Some possible implications regarding differences in location of this peptide are also briefly discussed.  相似文献   

11.
The concentrations of rat calcitonin gene-related peptide-like immunoreactivity (rCGRP-LI) in various organs of male rats as well as the molecular heterogeneity of rCGRP-LI in tissue extracts was examined using a specific radioimmunoassay (RIA) for rCGRP and gel-filtration chromatography. rCGRP-LI was high in extracts of the spinal cord (202 +/- 22.6 pg/mg wet wt. of tissue; mean +/- S.E.M.) and of the thyroid (229 +/- 62.3 pg/mg). rCGRP-LI was detectable in the brainstem, hypothalamus, stomach, duedenum, pancreas and kidney. The elution pattern of the extracts on a Sephadex G-50 column showed 3 peaks of rCGRP-LI irrespective of organs and tissues. The first peak corresponded to authentic rCGRP-(1-37). The second and third rCGRP-LI peaks probably consisted of C-terminal fragments of rCGRP, because they had a lower molecular weight than rCGRP-(1-37) and because our antiserum cross-reacts with a synthetic C-terminal fragment. The ratio of 3 rCGRP-LI molecules, however, differed between neural tissue extracts and others. The main component of rCGRP-LI in neural tissue was authentic rCGRP-(1-37), while the smaller fragments of rCGRP were chiefly contained in other tissues like the stomach, pancreas and thyroid. The relative ratio of rCGRP-LI molecules with different size in respective tissue extracts was not changed after leaving the dissected tissues for 2 h at room temperature. These findings indicate that rCGRP-LI is abundantly present in the thyroid as well as the spinal cord and it is detected in lower amounts in the alimentary tract and central nervous system. rCGRP-LI in the extracts consists of 3 different components, the proportions of which vary from one tissue to another, probably reflecting tissue-specific differences in the processing of CGRP.  相似文献   

12.
13.
Summary Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

14.
15.
Summary Tyrosine hydroxylase (TH) immunocytochemistry was utilized to quantify dopaminergic synapses in the inner plexiform layer of the retina of Bufo marinus. Since dopaminergic cells have bistratified dendritic arborisation in the inner plexiform layer, attention was given to the segregation of synapses between the scleral and the vitreal sublaminae. Light-microscopically, a more elaborate dendritic branching was observed in the scleral than in the vitreal sublamina. In contrast, about 55% of synapses occurred in the vitreal one fifth of the inner plexiform layer, 30% in the scleral fifth, and 15% in the intermediate laminae. Input sources and output targets showed only minor quantitative differences between sublaminae 1 and 5. TH-immunoreactive processes were found in presynaptic (62.8%) and postsynaptic (37.2%) positions. Synapses to the stained dendrites derived from bipolar (40.4%) and amacrine (59.6%) cells, whereas outputs from the TH-positive processes were directed to amacrine cells (56.8%) and to small and medium-sized dendrites (35.4%); at least some of these can be considered as ganglion cell dendrites. TH-positive profiles neither formed synapses with each other nor were presynaptic to bipolar cell terminals. Junctional appositions of the immunoreactive profiles were occasionally seen on non-stained amacrine and ganglion cell dendrites in the scleral sublamina of the inner plexiform layer and on optic axons in the optic fibre layer. Although dopaminergic cells are mainly involved in amacrine-amacrine interactions, inputs from bipolar terminals and outputs to ganglion cell dendrites were also substantial, suggestive of a role also in vertical information processing.  相似文献   

16.
In human brain, antibodies to tau proteins primarily label abnormal rather than normal structures. This might reflect altered immunoreactivity owing to post-mortem proteolysis, disease, or species differences. We addressed this issue by comparing the distribution of tau in bovine and human post-mortem nervous system tissues and in human neural cell lines, using new monoclonal antibodies (MAb) specific for phosphate-independent epitopes in bovine and human tau. In neocortex, hippocampus, and cerebellum, immunoreactive tau was widely expressed but segregated into the axon-neuropil domain of neurons. In spinal cord and peripheral nervous system, tau immunoreactivity was similarly segregated but less abundant. No immunoreactive tau was detected with our MAb in glial cells or in human neural cell lines that express neurofilament or glial filament proteins. Post-mortem delays in tissue denaturation of less than 24 hr did not affect the distribution of tau, but the method used to denature tissues did, i.e., microwave treatment preserved tau immunoreactivity more effectively than chemical fixatives such as Bouin's solution, and formalin-fixed tissue samples reacted poorly with our anti-tau MAb. We conclude that the distribution of tau proteins in human nervous system is similar to that described in perfusion-fixed experimental animals, and that visualization of normal immunoreactive tau in human tissues is critically dependent on the procedures used to denature post-mortem tissue samples. Furthermore, microenvironmental factors in different neuroanatomical sites may affect the regional expression of tau.  相似文献   

17.
Brains, retrocerebral complexes and frontal and suboesophageal ganglia of adult American cockroaches, Periplaneta americana, were immunohistochemically investigated with a specific monoclonal antibody (McAb) directed against a well characterized antigenic determinant, namely the COOH terminus of the endecapeptide substance P (SP). This resulted in the detection of several neurons and nerve fibres containing a substance antigenically closely related to this typically vertebrate neuropeptide. No difference in staining pattern could be observed between male and female insects. Related to the age of the adult specimens, however, a slight quantitative difference in SP immunoreactivity seems to occur, which probably might have functional implications. The SP-like peptide demonstrated in this study appears to be located in different neuronal structures than the ones that we earlier described as containing ACTH-, CRF-, OT-, AVP-, NP I-, NP II-, BPP-, FMRFamide-, AKH-, met-ENK-, FSH-, LH- and LHRF-like material (Verhaert et al. 1984a, b, 1985; Verhaert and De Loof 1985a, b).  相似文献   

18.
Clark L  Agricola HJ  Lange AB 《Peptides》2006,27(3):549-558
Proctolin-like immunoreactivity (PLI) was widely distributed in the locust, Locusta migratoria, within the central, peripheral and stomatogastric nervous systems, as well as the digestive system and retrocerebral complex. Proctolin-like immunoreactivity was observed in cells and processes of the brain and all ganglia of the ventral nerve cord. Of interest, PLI was found in the lateral neurosecretory cells, which send axons within the paired nervi corporis cardiaci II (NCC II) to the corpus cardiacum (CC). The CC contained extensive processes displaying PLI, which continued on within the paired nervi corporis allata (NCA) to the paired corpora allata (CA) where the axons entered and branched therein. The frontal and hypocerebral ganglia of the stomatogastric nervous system contained PLI within processes, resulting in a brightly staining neuropile. Each region of the gut contained PLI in axons and processes of varying patterns and densities. The paired ingluvial ganglia contained PLI, including an extensively stained neuropile and immunoreactive axons projecting through the nerves to the foregut. The hindgut contained PLI within longitudinal tracts, with lateral projections originating from the 8th abdominal ganglion via the proctodeal nerve. The midgut contained PLI in a regular latticework pattern with many varicosities and blebs. No difference in PLI in cells and processes of the central nervous system (CNS) was found between males and females.  相似文献   

19.
Summary Brains, retrocerebral complexes and frontal and suboesophageal ganglia of adult American cockroaches, Periplameta americana, were immunohistochemically investigated with a specific monoclonal antibody (McAb) directed against a well characterized antigenic determinant, namely the COOH terminus of the endecapeptide substance P (SP). This resulted in the detection of several neurons and nerve fibres containing a substance antigenically closely related to this typically vertebrate neuropeptide.No difference in staining pattern could be observed between male and female insects. Related to the age of the adult specimens, however, a slight quantitative difference in SP immunoreactivity seems to occur, which probably might have functional implications. The SP-like peptide demonstrated in this study appears to be located in different neuronal structures than the ones that we earlier described as containing ACTH-, CRF-, OT-, AVP-, NP I-, NP II-, BPP-, FMRFamide-, AKH-, met-ENK-, FSH-, LH- and LHRF-like material (Verhaert et al. 1984a, b, 1985; Verhaert and De Loof 1985a, b).  相似文献   

20.
Substance P-like immunoreactivity (SPLI) was demonstrated in mouse spinal cord by an indirect immunofluorescence method after decalcification of the vertebra with a mixture of EDTA and Zamboni's fixative. SPLI was observed mainly in the gray matter of the spinal cord, especially the superficial layers of the dorsal horn; the distribution was the same as in the control spinal cord. No diffusion and depletion of SPLI were recognized after decalcification and no specific fluorescence was observed. The findings reported here indicate that decalcification with a mixture of EDTA and Zamboni's fixative is a useful method for examining SPLI in nervous tissue surrounded in situ by calcified tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号