首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The untranslated leader of retroviral RNA genomes encodes multiple structural signals that are critical for virus replication. In the human immunodeficiency virus, type 1 (HIV-1) leader, a hairpin structure with a palindrome-containing loop is termed the dimer initiation site (DIS), because it triggers in vitro RNA dimerization through base pairing of the loop-exposed palindromes (kissing loops). Controversy remains regarding the region responsible for HIV-2 RNA dimerization. Different studies have suggested the involvement of the transactivation region, the primer binding site, and a hairpin structure that is the equivalent of the HIV-1 DIS hairpin. We have performed a detailed mutational analysis of the HIV-2 leader RNA, and we also used antisense oligonucleotides to probe the regions involved in dimerization. Our results unequivocally demonstrate that the DIS hairpin is the main determinant for HIV-2 RNA dimerization. The 6-mer palindrome sequence in the DIS loop is essential for dimer formation. Although the sequence can be replaced by other 6-mer palindromes, motifs that form more than two A/U base pairs do not dimerize efficiently. The inability to form stable kissing-loop complexes precludes formation of dimers with more extended base pairing. Structure probing of the DIS hairpin in the context of the complete HIV-2 leader RNA suggests a 5-base pair elongation of the DIS stem as it is proposed in current RNA secondary structure models. This structure is supported by phylogenetic analysis of leader RNA sequences from different viral isolates, indicating that RNA genome dimerization occurs by a similar mechanism for all members of the human and simian immunodeficiency viruses.  相似文献   

2.
3.
Du Z  Yu J  Andino R  James TL 《Biochemistry》2003,42(15):4373-4383
Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA-RNA and RNA-protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on three most frequently occurring families of tetraloop sequences, namely, the cUNCGg, the cGNRAg, and the gCUUGc sequences. Our knowledge surely is not exhaustive, and efforts are still being made to gain a better understanding. Here we report the NMR structure of a uCACGg tetraloop that occurs naturally within the cloverleaf RNA structure of the 5'-UTR of coxsackievirus B3. This tetraloop is the major determinant for interaction between the cloverleaf RNA and viral 3C protease, which is an essential part of a ribonucleoprotein complex that plays a critical role in the regulation of viral translation and replication. Our structure shows that the CACG tetraloop is closed by a wobble U.G base pair. The structure of the CACG tetraloop is stabilized by extensive base stacking and hydrogen bonding interactions strikingly similar to those previously reported for the cUUCGg tetraloop. Identification of these hallmark structural features strongly supports the existence of an extended YNCG tetraloop family. The U.G base pair closing the stem and the A residue in the loop introduce some small structural and themodynamic distinctions from the canonical cUUCGg tetraloop that may be important for recognition by the viral 3C protease.  相似文献   

4.
Ovine and caprine lentiviruses share the capacity to induce slowly progressive and inflammatory diseases of the central nervous system (leukoencephalitis or visna), lungs (progressive pneumonia or maedi), and joints (arthritis) in their natural hosts. Studies on their replication indicated that ovine lentiviruses and caprine arthritis-encephalitis virus (CAEV) recently isolated in the United States establish persistent infection in ovine and caprine fibroblasts, whereas older prototype ovine lentiviruses such as Icelandic visna virus or American progressive pneumonia virus irreversibly lyse fibroblast cultures. Since all of the recent isolates were found to be persistent, Narayan et al. (J. Gen. Virol. 59:345-356, 1982) concluded that the highly lytic viruses were only tissue-culture-adapted strains. In the present report, we isolated new ovine lentiviruses from French sheep with naturally occurring progressive pneumonia which are either highly lytic (five isolates), as are the Icelandic strains of visna virus, or persistent (one isolate), as are CAEV or American persistent ovine lentiviruses. Protein and nucleic acid content analyses of these new highly lytic (type I) and persistent (type II) isolates indicated that type I and type II ovine lentiviruses were genetically distinct, type I and type II viruses being closely related to the Icelandic strains of visna virus and to CAEV, respectively. We conclude that (i) highly lytic ovine lentiviruses, such as the Icelandic prototype strains of visna virus and persistent lentiviruses more related to CAEV, are naturally present in the ovine species, and (ii) irreversible cell lysis induced by highly lytic viruses does not result from a tissue culture adaptation of field isolates that were originally persistent but is instead the consequence of a genetic content distinct from that of persistent viruses.  相似文献   

5.
The complete nucleotide sequence of the visna virus 1514 genome was determined. Our sequence confirms the relationship of visna virus and other lentiviruses to human immunodeficiency virus (HIV) both at the level of sequence homology and of genomic organization. Sequence homology is shown to extend to the transmembrane proteins of lentivirus env genes; this homology is strongest in the extracellular domain, suggesting that close structural and functional similarities may also exist among these envelope proteins. Comparison of our data with the sequence of visna virus LV1-1, an antigenic variant derived from strain 1514, demonstrates that the rate of divergence has been about 1.7 x 10(-3) substitutions per nucleotide per year in vivo. This rate is orders of magnitude higher than that for most DNA genomes, but agrees well with estimates of the rate for HIV. A statistically significant cluster of mutations in the env gene appears to represent a hypervariable site and may correspond to the epitope responsible for the antigenic differences between 1514 and LV1-1. Analysis of the potential RNA folding pattern of the visna virus env gene shows that this hypervariable site falls within a region with little potential for intramolecular base pairing. This correlation of hypervariability with lack of RNA secondary structure is strengthened by the fact that it also holds for a hypervariable site in the env gene of HIV.  相似文献   

6.
Retroviruses harbour a diploid genome of two plus-strand RNAs linked non-covalently at the dimer linkage structure. Co-packaging of two parental RNAs is a prerequisite for recombination in retroviruses, but formation of heterodimers has not been demonstrated directly in vivo. Here, we explore elements in Harvey sarcoma virus (HaSV) RNA involved in homodimerization and heterodimerization with RNA of Moloney (Mo) and Akv murine leukemia viruses (MLV).By an in vitro assay, we found that HaSV dimerization specificity could be modulated by mutations in a decanucleotide palindrome (Pal) probably folded into a kissing-loop. Autocomplementary and non-autocomplementary sequences introduced into the putative loop directed the specificity towards formation of homodimers and heterodimers, respectively. Two stem-loop (SL) structures, both exposing a GACG tetraloop, enhanced the formation of stable HaSV dimers.A similar decanucleotide palindrome has been implicated in homodimerization of MLVs. Heterodimers between HaSV RNA and Mo- or Akv MLV were unstable, but could be stabilized by introduction of two point mutations in the putative HaSV kissing-loop, creating exact complementarity with Mo/Akv MLV palindromes. Moreover, such changes increased the HaSV RNA affinity for the two MLV RNAs. Similar to HaSV RNA homodimers, formation of heterodimers with Mo- or Akv MLV RNAs was induced by the presence of GACG loops.On the basis of these results, we propose that palindromic sequences act as variable determinants of specificity and GACG tetraloops as conserved determinants in the formation of homodimers and heterodimers of gamma-retrovirus retroviral RNAs in vivo. The complementarity of loop sequences in the packaging signal upstream of the GACG tetraloops might therefore determine homo- and heterodimerization specificity and recombination activity of these viruses.  相似文献   

7.
We searched for the presence of common RNA structural motifs in mammalian type C retroviruses related to murine leukemia viruses and the closely related avian spleen necrosis virus. A novel motif consisting of a pair of hairpins, called hairpin pair motif, was detected in the 5' untranslated regions of the genomes of these retroviruses. A combination of computational analyses that included the assessment of phylogenetic sequence conservation by multiple alignment, the search for regions with unusual RNA folding properties, and the analysis of RNA secondary structure by suboptimal free-energy calculations highlighted the significance of this hairpin pair motif. The hairpin pair motif encompasses 70 to 80 nucleotides between the splice donor site and the gag translational initiation codon of these viruses. The motif is composed of two adjacent hairpins both with a perfectly conserved GACG tetraloop. We propose that the novel GACG-hairpin pair motif described here constitutes an essential component of the regulatory machinery in these type C retroviruses.  相似文献   

8.
9.
The human immunodeficiency virus type 1 Rev trans activator binds directly to unspliced viral mRNA in the nucleus and activates its transport to the cytoplasm. In additon to the sequences that confer RNA binding and nuclear localization, Rev has a carboxy-terminal region, the activation domain, whose integrity is essential for biological activity. Because it has been established that Rev constitutively exits and reenters the nucleus and that the activation domain is required for nuclear exit, it has been proposed that Rev's activation domain is a nuclear export signal (NES). Here, we used microinjection-based assays to demonstrate that the activation domain of human immunodeficiency virus type 1 Rev imparts rapid nuclear export after its transfer to heterologous substrates. NES- mediated export is specific, as it is sensitive both to inactivation by missense mutation and to selective inhibition by an excess of the wild-type, but not mutant, activation domain peptide. Examination of the Rev trans activators of two nonprimate lentiviruses, visna virus and equine infectious anemia virus, revealed that their activation domains are also potent NESs. Taken together, these data demonstrate that nuclear export can be determined by positively acting peptide motifs, namely, NESs, and suggest that Rev proteins activate viral RNA transport by providing export ribonucleoproteins with specific information that targets them to the cytoplasm.  相似文献   

10.
The formation of genomic RNA dimers during the retroviral life cycle is essential for optimal viral replication and infectivity. The sequences and RNA structures responsible for this interaction are located in the untranslated 5' leader RNA, along with other cis-acting signals. Dimer formation occurs by specific interaction between identical structural motifs. It is believed that an initial kissing hairpin forms following self-recognition by autocomplementary RNA loops, leading to formation of an extended stable duplex. The dimerization initiation site (DIS) of the deltaretrovirus human T-cell lymphotropic virus type-I (HTLV-I) has been previously localized to a 14-nucleotide sequence predicted to contain an RNA stem loop. Biochemical probing of the monomeric RNA structure using RNAse T1, RNAse V1, RNAse U2, lead acetate, and dimethyl sulfate has led to the generation of the first structural map of the HTLV-I DIS. A comprehensive data set of individual nucleotide modifications reveals that the structural motif responsible for HTLV-I RNA dimerization forms a trinucleotide RNA loop, unlike any previously characterized retroviral dimerization motif. Molecular modeling demonstrates that this can be formed by an unusual C:synG base pair closing the loop. Comparative phylogeny indicates that such a motif may also exist in other deltaretroviruses.  相似文献   

11.
Two copies of human immunodeficiency virus type 1 RNA are incorporated into each virus particle and are further converted to a stable dimer as the virus particle matures. Several RNA segments that flank the 5' splice donor site at nucleotide (nt) 289 have been shown to act as packaging signals. Among these, RNA stem-loop 1 (SL1) (nt 243 to 277) can trigger RNA dimerization through a "kissing-loop" mechanism and thus is termed the dimerization initiation site. However, it is unknown whether other packaging signals are also needed for dimerization. To pursue this subject, we mutated stem-loop 3 (SL3) (nt 312 to 325), a GA-rich region (nt 325 to 336), and two G-rich repeats (nt 363 to 367 and nt 405 to 409) in proviral DNA and assessed the effects on RNA dimerization by performing native Northern blot analyses. Our results show that the structure but not the specific RNA sequence of SL3 is needed not only for efficient viral RNA packaging but also for dimerization. Mutations of the GA-rich sequence severely diminished viral RNA dimerization as well as packaging; the combination of mutations in both SL3 and the GA-rich region led to further decreases, implying independent roles for each of these two RNA motifs. Compensation studies further demonstrated that the RNA-packaging and dimerization activity of the GA-rich sequence may not depend on a putative interaction between this region and a CU repeat sequence at nt 227 to 233. In contrast, substitutions in the two G-rich sequences did not cause any diminution of viral RNA packaging or dimerization. We conclude that both the SL3 motif and GA-rich RNA sequences, located downstream of the 5' splice donor site, are required for efficient RNA packaging and dimerization.  相似文献   

12.
We investigated the in vitro RNA dimerization properties of the untranslated leader RNA derived from human immunodeficiency virus type 1 variants circulating in an individual with a low viral load and slow disease progression. The leader sequences of these viruses contain highly unusual polymorphisms within the dimerization initiation site (DIS): an insert that abolishes dimerization and a compensatory substitution. The dimerization of leader RNA from late stages of infection is further improved by additional mutations outside the DIS motif that facilitate a secondary structure switch from a dimerization-incompetent to a dimerization-competent RNA conformation.  相似文献   

13.
Two alternating structures of the HIV-1 leader RNA   总被引:7,自引:2,他引:5       下载免费PDF全文
In this study we demonstrate that the HIV-1 leader RNA exists in two alternative conformations, a branched structure consisting of several well-known hairpin motifs and a more stable structure that is formed by extensive long-distance base pairing. The latter conformation was first identified as a compactly folded RNA that migrates unusually fast in nondenaturing gels. The minimally required domains for formation of this conformer were determined by mutational analysis. The poly(A) and DIS regions of the leader are the major determinants of this RNA conformation. Further biochemical characterization of this conformer revealed that both hairpins are disrupted to allow extensive long-distance base pairing. As the DIS hairpin is known to be instrumental for formation of the HIV-1 RNA dimer, the interplay between formation of the conformer and dimerization was addressed. Formation of the conformer and the RNA dimer are mutually exclusive. Consequently, the conformer must rearrange into a branched structure that exposes the dimer initiation signal (DIS) hairpin, thus triggering formation of the RNA dimer. This structural rearrangement is facilitated by the viral nucleocapsid protein NC. We propose that this structural polymorphism of the HIV-1 leader RNA acts as a molecular switch in the viral replication cycle.  相似文献   

14.
A simple and direct plaque assay for maedi virus, two strains of progressive pneumonia virus, and two strains of visna virus has been developed and evaluated. The technique allows the plaques formed by these viruses to be localized without disturbing the host-cell substrate of sheep choroid plexus cells or the gelled maintenance medium over the host-cell monolayer. Diethylaminoethyl-dextran supplementation of the medium used to overlay strain K796 visna virus-infected cultures decreases the time required for maximum plaque development from 12 to 10 days, enhances the contrast of the plaques, increases the titer of plaque-forming units, and permits a plaque size heterogeneity to be realized. Both large and small plaques occur in cultures infected with the visna viruses, one strain of progressive pneumonia virus, or maedi virus. In contrast, the plaques observed in cultures infected with the second strain of progressive pneumonia virus are relatively homogeneous in size.  相似文献   

15.
16.
Eight sheep were inoculated with Icelandic maedi strain M 88; 2 sheep served as control sheep and were in close contact with the inoculated ones. Four of the sheep were inoculated via the respiratory tract with 7×106 TGID50 of strain M88 and the other 4 intracerebrally with 5×105 TGID50 of the same strain. Maedi M88 strain was isolated from peripheral blood leukocytes of all inoculated sheep. There was a striking difference between the 2 groups in the appearance of demonstrable viremia after inoculation. Viremia could be demonstrated in the intrapulmonarily inoculated sheep within 2–6 months but not until 8–11 months after inoculation in the intracerebrally inoculated ones. This finding is thought most probably to reflect a weak neurotropism of the strain used. After the first demonstration of viremia, maedi virus has been recovered quite reqularly in peripheral leukocytes of all intrapulmonarily inoculated sheep, but less regularly in the intracerebrally inoculated ones. Maedi virus was isolated from 1 of the uninoculated control sheep 15 months after inoculation. The first clinical case with a clinical appearance suggesting combined involvement of maedi and visna was found among the intrapulmonarily inoculated sheep, 8% months after inoculation. Histopathological examination and virus isolation confirmed maedi. The cause of paraplegia could not be confirmed. No histopathological changes were found and no virus isolation was made from the central nervous system of this animal. One of the intracerebrally inoculated sheep died suddenly without any observed clinical signs 11 months after inoculation. Histopathological examination revealed pulmonary lesions of maedi, but no visna lesions in the central nervous system, although maedi virus was isolated from various parts of brain. None of the other experimental sheep displayed clinical signs of maedi or visna during the observation period of 18 months.  相似文献   

17.
Coxsackievirus B3 (CVB3) is a principal viral cause of acute myocarditis in humans and has been implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, it has been demonstrated elsewhere that, for several wild-type CB3 strains, the primary molecular determinant of cardiovirulence phenotype localizes to the 5′ nontranslated region (5′NTR) and capsid. Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA–RNA and RNA–protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on one most frequently occurring family of tetraloop sequences, namely, the GNRA sequence, especially the GNAA sequence conserved in all enteroviruses. Here in this study, through construction of CVB3 chimeric mutants, the predicted stem loop (SL) V within the 5′NTR has been identified as important in determining viral cardiovirulence. Replication assays in HeLa cell monolayers revealed that wild-type CVB3 virus and two of the six mutants constructed here grow efficiently, whereas other mutant viruses replicate poorly. Furthermore, the in vitro translation products from these mutants and wild-type CVB3, demonstrated that the two mutants who replicate efficiently, translated at relatively equivalent amount than the wild-type. However, other mutants demonstrated a low efficiency in their production of protein when translated in a Rabbit Reticulocytes Lysats.  相似文献   

18.
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号