首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first enzyme for histidine biosynthesis, encoded in the hisG gene, is involved in regulation of expression of the histidine operon in Salmonella typhimurium. The studies reported here concern the question of how expression of the histidine operon is affected by a mutation in the hisG gene that alters the allosteric site of the first enzyme for histidine biosynthesis, rendering the enzyme completely resistant to inhibition by histidine. The intracellular concentrations of the enzymes encoded in the histidine operon in a strain carrying such a mutation on an episome and missing the chromosomal hisG gene are three- to fourfold higher than in a strain carrying a wild-type hisG gene on the episome. The histidine operon on such a strain fails to derepress in response to histidine limitation and fails to repress in response to excess histidine. Furthermore, utilizing other merodiploid strains, we demonstrate that the wild-type hisG gene is trans dominant to the mutant allele with respect to this regulatory phenomenon. Examination of the regulation of the histidine operon in strains carrying the feedback-resistant mutation in an episome and hisT and hisW mutations in the chromosome showed that the hisG regulatory mutation is epistatic to the hisT and hisW mutations. These data provide additional evidence that the first enzyme for histidine biosynthesis is involved in autogenous regulation of expression of the histidine operon.  相似文献   

2.
Studies were done to examine direct binding of the first enzyme of the histidine biosynthetic pathway (phosphoribosyltransferase) to 32P-labeled phi80dhis DNA and competition of this binding by unlabeled homologous DNA and by various preparations of unlabeled heterologous DNA, including that from a defective phi80 bacteriophage carrying the histidine operon with a deletion of part of its operator region. Our findings show that phosphoribosyltransferase binds specifically to site in or near the regulatory region of the histidine operon. The stability of the complex formed by interaction of the enzyme with the DNA was markedly decreased by the substrates of the enzyme and was slightly increased by the allosteric inhibitor, histidine. These findings are consistent with previous data that indicate that phosphoribosyltransferase plays a role in regulating expression of the histidine operon.  相似文献   

3.
Previous studies suggested that phosphoribosyltransferase, which catalyzes the first step of the pathway for histidine biosynthesis in Salmonella typhimurium and which is sensitive to inhibition by histidine, plays a role in repression of the histidine operon. Recently, we showed that the enzyme has a high affinity for histidyl transfer ribonucleic acid (His-tRNA), which is known to participate in the repression process. In the present study, we have investigated further the interaction between the enzyme and His-tRNA. We found that His-tRNA binds at a site on phosphoribosyltransferase distinct from the catalytic site and the histidine-sensitive site; that the substrates of the enzyme inhibit the binding of His-tRNA, whereas histidine does not do so; that, once a complex has been formed between phosphoribosyltransferase and His-tRNA, the substrates of the enzyme decrease the stability of the complex, whereas histidine is without effect; and that purified phosphoribosyltransferase which has a defect in its inhibition by histidine (produced by mutation) displays an altered ability to bind His-tRNA, a finding which may be a reflection of the fact that mutants producing such a defective enzyme display an alteration of the repression process.  相似文献   

4.
W R Jones  G J Barcak    R E Wolf  Jr 《Journal of bacteriology》1990,172(3):1197-1205
In Escherichia coli, the level of 6-phosphogluconate dehydrogenase is directly proportional to the cellular growth rate during growth in minimal media. This contrasts with the report by Winkler et al. (M. E. Winkler, J. R. Roth, and P. E. Hartman, J. Bacteriol. 133:830-843, 1978) that the level of the enzyme in Salmonella typhimurium LT-2 strain SB3436 is invariant. The basis for the difference in the growth-rate-dependent regulation between the two genera was investigated. Expression of gnd, which encodes 6-phosphogluconate dehydrogenase, was growth rate uninducible in strain SB3436, as reported previously, but it was 1.4-fold growth rate inducible in other S. typhimurium LT-2 strains, e.g., SA535. Both the SB3436 and SA535 gnd genes were growth rate inducible in E. coli K-12. Moreover, the nucleotide sequences of the regulatory regions of the two S. typhimurium genes were identical. We concluded that a mutation unlinked to gnd is responsible for the altered growth rate inducibility of 6-phosphogluconate dehydrogenase in strain SB3436. Transductional analysis showed that the altered regulation is due to the presence of a mutation in hisT, the gene for the tRNA modification enzyme pseudouridine synthetase I. A complementation test showed that the regulatory defect conferred by the hisT mutation was recessive. In E. coli, hisT mutations reduced the extent of growth rate induction by the same factor as in S. typhimurium. The altered regulation conferred by hisT mutations was not simply due to their general effect of reducing the polypeptide chain elongation rate, because miaA mutants, which lack another tRNA modification and have a similarity reduced chain growth rate, had higher rather than lower 6-phosphogluconate dehydrogenase levels. Studies with genetic fusions suggested that hisT mutations lower the gnd mRNA level. The data also indicated that hisT is involved in translational control of gnd expression, but not the aspect mediated by the internal complementary sequence.  相似文献   

5.
6.
Previous studies showed that the enzyme (phosphoribosyltransferase) which catalyzes the first step of the histidine pathway in Salmonella typhimurium plays a role in regulation of the histidine operon. Since histidyl transfer ribonucleic acid (His-tRNA) is required for repression of the histidine operon, we considered the possibility that the role of phosphoribosyltransferase might be realized through an interaction with His-tRNA. One prediction inherent in this idea is that the enzyme should interact with His-tRNA in vitro. Evidence is presented for such an interaction. Binding of (3)H-His-tRNA to purified phosphoribosyltransferase was tested on Sephadex columns and on nitrocellulose filters. The enzyme was found to have a high affinity for tRNA. Comparing the binding of (3)H-His-tRNA with that of tRNA aminoacylated with other (3)H-amino acids disclosed that the binding of the histidyl species of tRNA is favored over that of other species and is dependent upon magnesium-ion concentration.  相似文献   

7.
Protein synthesis was studied comparatively in a wild-type strain of Salmonella typhimurium and in hisT mutant cells defective in the pseudouridylation of transfer RNA. From a quantitative point of view, no significant differences between the two types of strain was observed when measuring the rate of protein synthesis during either exponential growth or starvation for histidine. In contrast, the qualitative analysis of proteins by two-dimensional gel electrophoresis showed that histidine-starved hisT cells mistranslate the genetic program at a higher frequency than exponentially growing hisT cells or either starved or unstarved hisT+ cells.  相似文献   

8.
9.
Previous studies showed that when triazolalanine was added to a derepressed culture of a histidine auxotroph, repression of the histidine operon occurred as though histidine had been added (6). However, when triazolalanine was added to a derepressed culture of a strain with a mutation in the first gene of the histidine operon which rendered the first enzyme for histidine biosynthesis resistant to inhibition by histidine, repression did not occur. The studies reported here represent a cis/trans test of this effect of mutations to feedback resistance. Using specially constructed merodiploid strains, we were able to show that the wild-type allele is dominant to the mutant (feedback resistant) allele and that the effect operates in trans. We conclude that the enzyme encoded by the first gene of the histidine operon exerts its regulatory effect on the operon not by acting locally at its site of synthesis, but by acting as a freely diffusible protein.  相似文献   

10.
Control of isoleucine-valine biosynthesis was examined in the cold-sensitive hisW3333 mutant strain of Salmonella typhimurium. During growth at the permissive temperature (37 degrees C), the isoleucine-valine (ilv) biosynthetic enzyme levels of the hisW mutant were two- to fourfold below these levels in an isogenic hisW+ strain. Upon a reduction in growth temperature to partially permissive (30 degrees C), the synthesis of these enzymes in the hisW mutant was further reduced. However, synthesis of the ilv enzymes was responsive to the repression signal(s) caused by the addition of excess amounts of isoleucine, valine, and leucine to the hisW mutants. Such a "super-repressed" phenotype as that observed in this hisW mutant is similar to that previously shown for the hisU1820 mutant, but was different from the regulatory response of the hisT1504 mutant strain. Moreover, by the use of growth-rate-limiting amounts of the branched-chain amino acids, it was shown that this hisW mutant generally did not increase the synthesis of the ilv enzymes as did the hisW+ strain. Overall, these results are in agreement with the hypothesis that the hisW mutant is less responsive to ilv specific attenuation control than is the hisW+ strain and suggest that this limited regulatory response is due to an alteration in the amount or structure of an element essential to attenuation control of the ilv operons.  相似文献   

11.
hisT is part of a multigene operon in Escherichia coli K-12.   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon.  相似文献   

12.
13.
Escherichia coli K-12 hisT mutants were isolated, and their properties were studied. These mutants are derepressed for the histidine operon, map close to the purF locus at about 49.5 min on the E. coli linkage map, and lack pseudouridylate synthetase activity. The defect in this enzyme leads to the absence of pseudouridines in the anticodon loop of several transfer ribonucleic acid species, as evidenced by the altered elution profile on reversed-phase chromatography and resistance to amino acid analogues. Finally, the hisT mutants studied have a reduced growth rate that appears to be linked to hisT, although it is not known whether it is due to the same mutation. The normal generation time can be restored by supplementing the medium with adenine, uracil, and isoleucine.  相似文献   

14.
An effort to find growth conditions leading to conditional regulation of the histidine operon of Salmonella typhimurium by the allosteric first enzyme of the pathway, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), is reported. A strain deleting the enzyme, TR3343, behaved simply and predictably under all growth conditions, whereas histidine auxotrophs containing active enzyme behaved in complicated ways dependent upon the location of the histidine pathway lesion. hisE strains derepressed the operon only one-half as much as TR3343 when grown on limiting histidine and a poor carbon source, but they also grew more slowly, probably as a result of high N1-(5-phospho-beta-D-ribosyl)-adenosine triphosphate levels in the cell. hisC strains exhibited oscillatory growth behavior and oscillatory histidine operon expression when grown on intermediate concentrations of the histidine precursor histidinol. This behavior probably was caused by synergistic in-phase variations in the histidine, purine nucleotide, and ppGpp pools of the cell. All of the growth and histidine operon expression effects associated with the presence of adenosine triphosphate phosphoribosyltransferase could be assigned to metabolic perturbation of the cell caused by unregulated enzymatic activity.  相似文献   

15.
We characterized several unusual phenotypes caused by stable insertion mutations in a gene that is located upstream in the same operon from hisT, which encodes the tRNA modification enzyme pseudouridine synthase I. Mutants containing kanamycin resistance (Kmr) cassettes in this upstream gene, which we temporarily designated usg-2, failed to grow on minimal plus glucose medium at 37 and 42 degrees C. However, usg-2::Kmr mutants did form oddly translucent, mucoid colonies at 30 degrees C or below. Microscopic examination revealed that cells from these translucent colonies were spherical and seemed to divide equatorially. Addition of D-alanine restored the shape of the mutant cells to rods and allowed the mutants to grow slowly at 37 degrees C and above. By contrast, addition of the common L-amino acids prevented growth of the usg-2::Kmr mutants, even at 30 degrees C. Furthermore, prolonged incubation of usg-2::Kmr mutants at 37 and 42 degrees C led to the appearance of several classes of temperature-resistant pseudorevertants. Other compounds also supported growth of usg-2::Kmr mutants at 37 and 42 degrees C, including glycolaldehyde and the B6 vitamers pyridoxine and pyridoxal. This observation suggested that usg-2 was pdxB, which had been mapped near hisT. Complementation experiments confirmed that usg-2 is indeed pdxB, and inspection of the pyridoxine biosynthetic pathway suggests explanations for the unusual phenotypes of pdxB::Kmr mutants. Finally, Southern hybridization experiments showed that pdxB and hisT are closely associated in several enterobacterial species. We consider reasons for grouping pdxB and hisT together in the same complex operon and speculate that these two genes play roles in the global regulation of amino acid metabolism.  相似文献   

16.
We previously proposed that the first enzyme for histidine biosynthesis in Salmonellatyphimurium plays a role in regulating expression of the histidine operon and that in order to play this role the enzyme must form a complex with histidyl-tRNA. Among the many observations that led to these conclusions were 1) that regulation of the histidine operon is defective in strains carrying a mutation in the gene for the first enzyme that renders the enzyme resistant to inhibition by histidine; and 2) that the enzyme purified from the wild type strain interacts specifically, and with high affinity, with histidyl-tRNA. The present study was carried out to test the prediction that the enzyme purified from the mutant strain described above would display a defect in its interaction with histidyl-tRNA. This prediction was fulfilled by the finding that purified histidine-insensitive enzyme does not bind histidyl-tRNA. Our results therefore suggest that the capacity of the enzyme to bind histidyl-tRNA invitro is a reflection of its regulatory function invivo.  相似文献   

17.
18.
A hisT mutant of Salmonella typhimurium was found to have altered regulation of the isoleucine-valine and leucine enzymes. These enzymes in the hisT strain were derepressed two- to eightfold over those of the parent wild-type strain when grown in minimal medium or under repressing conditions. The amount of tRNA(Leu) and the cellular concentration of charged tRNA(Leu) was about the same in the hisT strain and in the wild type. However, leucyl-tRNA from the mutant was chromatographically different from that of wild type, confirming previous reports that hisT strains have altered tRNA(Leu). These results suggest strongly that tRNA(Leu) is involved in repression of the isoleucine-valine and leucine enzymes in S. typhimurium.  相似文献   

19.
Two strains with mutations in the first structural gene of the histidine operon of Salmonella typhimurium were characterized. (The first structural gene specifies the first enzyme of histidine biosynthesis, phosphoribosyltransferase, which is sensitive to feedback inhibition by histidine.) One mutation, hisG3934, results in a phosphoribosyltransferase which is no longer sensitive to feedback inhibition by histidine but is instead subject to inhibition by aspartic acid. The other mutation, hisG3935, allows the histidine operon to be partially repressed by several amino acids, including aspartic acid. Analysis of hisG3935 is consistent with the hypothesis that phosphoribosyltransferase is directly involved in the regulation of the histidine operon.  相似文献   

20.
The specificity of the interaction between phosphoribosyltransferase and partially purified preparations of various species of transfer ribonucleic acid (tRNA) was investigated with the use of a filter binding assay. The enzyme showed a higher affinity for histidyl-tRNA than for arginyl- or glutamyl-tRNA. Competition experiments revealed that the enzyme does not distinguish between the aminoacylated and deacylated forms of arginine tRNA or glutamic acid tRNA, since all the binding of the aminoacylated tRNA could be inhibited by deacylated tRNA. The enzyme does, however, distinguish between the aminoacylated and deacylated forms of histidine tRNA. Approximately 70% of the binding of aminoacylated histidine tRNA is specific, since only 30% of the binding could be inhibited by deacylated tRNA. The possibility that the regulatory role of phosphoribosyltransferase is carried out as a complex with histidyl-tRNA is consistent with these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号