首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of anesthetic agents on systemic critical O2 delivery   总被引:1,自引:0,他引:1  
The present study tested the hypothesis that anesthetic agents can alter tissue O2 extraction capabilities in a dog model of progressive hemorrhage. After administration of pentobarbital sodium (25 mg/kg iv) and endotracheal intubation, the dogs were paralyzed with pancuronium bromide, ventilated with room air, and splenectomized. A total of 60 dogs were randomized in 10 groups of 6 dogs each. The first group served as control (C). A second group (P) received a continuous infusion of pentobarbital (4 mg.kg-2.h-2), which was started immediately after the bolus dose. Three groups received enflurane (E), halothane (HL), or isoflurane (I) at the end-tidal concentration of 0.7 minimum alveolar concentration (MAC). The sixth group received halothane at the end-tidal concentration of 1 MAC (HH). Two groups received intravenous alfentanil at relatively low dose (AL) or high dose (AH). The last two groups received intravenous ketamine at either relatively low dose (KL) or high dose (KH). In each group, O2 delivery (Do2) was progressively reduced by hemorrhage. At each step, systemic Do2 and O2 consumption (VO2) were measured separately and the critical point was determined from a plot of Vo2 vs. Do2. The critical O2 extraction ratio (OER) in the control group was 65.0 +/- 7.8%. OER was lower in all anesthetized groups (P, 44.3 +/- 11.8%; E, 47.0 +/- 7.7%; HL, 45.7 +/- 11.2%; I, 44.3 +/- 7.1%; HH, 33.7 +/- 6.0%; AL, 56.5 +/- 9.6%; AH, 43.5 +/- 5.9%; KH, 57.7 +/- 7.1%), except in the KL group (78.3 +/- 10.0%). The effects of halothane and alfentanil on critical OER were dose dependent (P less than 0.05), whereas critical OER was significantly lower in the KH than in the KL group. Moreover, the effects of anesthetic agents on critical Do2 appeared related to their effects on systemic vascular resistance. Anesthetic agents therefore alter O2 extraction by their peripheral vascular effects. However, ketamine, with its unique sympathetic stimulant properties, had a lesser effect on OER than the other anesthetic agents. It could therefore be the anesthetic agent of choice in clinical situations when O2 availability is reduced.  相似文献   

2.
Factors that determine the hemodynamic response to inhalation anesthetics   总被引:2,自引:0,他引:2  
The hemodynamic response to inhalation anesthesia is influenced by three factors: 1) the specific drug, 2) the dose, and 3) individual characteristics of the subject. To investigate the importance of these factors on the cardiovascular response, we administered five doses [0, 0.5, 1.0, 1.5, and 2.0 minimum alveolar concentration (MAC)] of enflurane, halothane, and isoflurane to each of six dogs. Twelve hemodynamic variables were measured. For all variables, a change in the dose of each drug produced a consistent effect in each dog. Increases in dose resulted in significant decreases in seven variables [left ventricular ejection fraction, cardiac index (CI), stroke volume index (SVI), mean arterial pressure (MAP), mean pulmonary arterial pressure (MPAP), left ventricular stroke work index (LVSWI), and heart rate (HR)] and a significant increase in one variable [central venous pressure (CVP)]. In contrast, the response of individual dogs to different drugs was not consistent. For seven variables [MAP, MPAP, LVSWI, CVP, pulmonary capillary wedge pressure (PCWP), end-diastolic volume index (EDVI), and end-systolic volume index (ESVI)], a significant difference in the responses of a dog to two drugs was greater than zero, whereas a significant difference in the response of at least one other dog to the same two drugs was less than zero (discordant dog-drug interactions). Thus, in contrast to the consistency of the cardiovascular response to changes in dose, the hemodynamic response to different drugs was inconsistent among dogs. We also studied the effect of fluid challenge on hemodynamic response at 1.5 or 2.0 MAC of the three drugs given to each dog.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To reinvestigate the blood-gas CO2 equilibrium in lungs, rebreathing experiments were performed in five unanesthetized dogs prepared with a chronic tracheostomy and an exteriorized carotid loop. The rebreathing bag was initially filled with a gas mixture containing 6-8% CO2, 12, 21, or 39% O2, and 1% He in N2. During 4-6 min of rebreathing PO2 in the bag was kept constant by a controlled supply of O2 while PCO2 rose steadily from approximately 40 to 75 Torr. Spot samples of arterial blood were taken from the carotid loop; their PCO2 and PO2 were measured by electrodes and compared with the simultaneous values of end-tidal gas read from a mass spectrometer record. The mean end-tidal-to-arterial PO2 differences averaging 16, 4, and 0 Torr with bag PO2 about 260, 130, and 75 Torr, respectively, were in accordance with a venous admixture of about 1%. No substantial PCO2 differences between arterial blood and end-tidal gas (PaCO2 - PE'CO2) were found. The mean PaCO2 - PE'CO2 of 266 measurements in 70 rebreathing periods was -0.4 +/- 1.4 (SD) Torr. There was no correlation between PaCO2 - PE'CO2 and the level of arterial PCO2 or PO2. The mean PaCO2 - PE'CO2 became +0.1 Torr when the blood transit time from lungs to carotid artery (estimated at 6 s) and the rate of rise of bag PCO2 (4.5 Torr/min) were taken into account. These experimental results do not confirm the presence of significant PCO2 differences between arterial blood and alveolar gas in rebreathing equilibrium.  相似文献   

4.
Dexmedetomidine (DEX) is a highly selective alpha(2)-adrenoceptor agonist in both the central and peripheral nervous systems. Its cardiorespiratory effects have been described; however, these effects have not been reported when it is used in combination with volatile anaesthetics in rats. The cardiovascular and respiratory actions of a continuous intravenous infusion of 0.25 microg/kg/min of DEX administered to rats anaesthetized at 1 minimum alveolar concentration (MAC) of either halothane (HAL) or isoflurane (ISO) were studied. Twenty-eight rats were grouped into four treatment groups: HAL alone, ISO alone, DEX + HAL and DEX + ISO. The MAC(HAL) or MAC(ISO) was determined in each rat from alveolar gas samples at the time of tail clamping. Control MAC values, expressed as mean +/- standard deviation, were 1.31 +/- 0.1% for HAL and 1.46 +/- 0.05% for ISO. DEX reduced HAL MAC from 1.31 +/- 0.1% to 0.36 +/- 0.22% (72 +/- 17% MAC reduction) and ISO MAC from 1.46 +/- 0.05% to 0.83 +/- 0.2% (43 +/- 14% MAC reduction). Heart rate (HR) was decreased in both DEX groups at 1 MAC, with no differences between HAL and ISO. The mean arterial pressure was significantly depressed in the DEX + ISO group compared with the ISO only group. This difference in mean arterial blood pressure (MABP) was not seen between the DEX + HAL and HAL only groups. Respiratory depression was minor at 1 MAC with both inhalant anaesthetics. DEX reduced the MAC of HAL to a degree greater than it decreased the MAC of ISO. The effects of DEX on HR and ventilation were similar in rats anaesthetized with HAL or ISO at 1 MAC; however, hypotension was more pronounced when DEX was combined with ISO at 1 MAC.  相似文献   

5.
Cardiac output (Q) was estimated in supine rest and in upright cycling at several work rates up to 200 W in five male and one female subjects. At least four repetitions of both the CO2-rebreathing plateau method (Collier, J. Appl. Physiol. 9:25-29, 1956) and the Kim et al. (J. Appl. Physiol. 21: 1338-1344, 1966) single-breath method were performed at each work rate, in a steady state of O2 consumption and heart rate. At supine rest and low work rates, estimates of Q were similar by the two methods. However, at higher work rates, the single-breath method significantly (P less than 0.05) underestimated the value obtained by CO2 rebreathing. The reason for the difference in estimates of Q by the two methods was traced to the determination of arterial partial pressure of CO2 (PaCO2) and mixed venous partial pressure of CO2 (PvCO2). The estimate of PaCO2 from the single-breath method was approximately 88.5% of the estimate from end-tidal PCO2 used with the rebreathing method (P less than 0.001). The oxygenated PvCO2 calculated from the single-breath Q averaged approximately 92.5% of the PvCO2 from CO2 rebreathing (P less than 0.0001). The difference in estimates of Q was not eliminated by using a logarithmic form of the CO2 dissociation curve with the single-breath method.  相似文献   

6.
We investigated the effects of an intravenous (pentobarbital sodium) and inhalational (halothane) general anesthetic on the pulmonary vascular responses to angiotensin II and angiotensin-converting enzyme inhibition (CEI). Multipoint pulmonary vascular pressure-flow (P/Q) plots were generated in conscious pentobarbital- (30 mg/kg iv) and halothane-anesthetized (approximately 1.2% end-tidal) dogs in the intact (no drug) condition, during angiotensin II administration (60 ng.kg-1.min-1 iv), and during CEI (captopril 1 mg/kg plus 1 mg.kg-1.h-1 iv). In conscious dogs, angiotensin II increased (P less than 0.001) the pulmonary vascular pressure gradient [pulmonary arterial pressure--pulmonary arterial wedge pressure (PAP-PAWP)] over the empirically measured range of Q; i.e., angiotensin II caused pulmonary vasoconstriction. Pulmonary vasoconstriction (P less than 0.01) in response to angiotensin II was also observed during pentobarbital sodium anesthesia. In contrast, angiotensin II had no effect on the P/Q relationship during halothane anesthesia. In conscious dogs, CEI decreased (P less than 0.001) PAP-PAWP over the empirically measured range of Q; i.e., CEI caused pulmonary vasodilation. However, CEI caused pulmonary vasoconstriction (P less than 0.02) during pentobarbital sodium and had no effect on the P/Q relationship during halothane. Thus, compared with the conscious state, the pulmonary vasoconstrictor response to angiotensin II is unchanged or abolished, and the pulmonary vasodilator response to CEI is reversed to vasoconstriction or abolished during pentobarbital sodium and halothane anesthesia, respectively.  相似文献   

7.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

8.
The respiratory and mean arterial pressure (MAP) responses to slow ramp pressure stimulation of carotid baroreceptors were compared in pentobarbital-anesthetized vagotomized dogs breathing 100% O2. Carotid sinus pressure (CSP) was raised from 50 (control) to 220 mmHg and then returned to control as linear ramps (+/- 1 mmHg/s) in isolated sinuses. MAP, heart rate (HR), ventilation (VE), frequency (f), and tidal volume (VT) were expressed as percent of control. The maximum difference between responses to positive and negative ramps at a given CSP (MAX) and the average difference (AVG) served as indicators of the hysteresis for each response. In 27 dogs MAP changed monotonically with varying CSP with insignificant (P = 0.27, MAX) or barely significant (P = 0.03, AVG) hysteresis, monotonic function being one that is continuously nondecreasing or continuously nonincreasing. Similar responses were obtained for HR. VE decreased as CSP increased, but the change was not monotonic. During negative ramp, VE increased back to control with an overshoot. Hysteresis for VE was pronounced (P less than 0.0001, both measures). The VE response was primarily determined by f; VT increased with CSP. To eliminate secondary respiratory effects due to alterations in MAP, in seven dogs similar experiments were performed after ganglionic blockade with hexamethonium. Hysteresis in VE and f persisted. To assess the role of changing arterial PCO2 (PaCO2) on VE, the CSP was held constant (after a ramp rise) at 140, 150, or 180 mmHg before reducing it at -1 mmHg/s to 50 mmHg; however, a significant hysteresis in VE was still observed. Further experiments, to eliminate secondary reflexes due to altered PaCO2, were performed in seven dogs after ganglionic blockade and paralysis with Flaxedil, with phrenic nerve activity as an indicator of ("neural") respiration. The hysteresis in VE and f were no longer significant. In summary, the results indicate that 1) slow ramp carotid baroreceptor stimulation elicits both VE and cardiovascular responses, the VE response showing a dramatically higher hysteresis than the cardiovascular responses; 2) the ventilatory hysteresis is partially explained by the secondary changes in PaCO2 and perhaps by cardiovascular variables; and 3) the central processing of the baroventilatory reflex appears to be rate sensitive at a slower rate of pressure change than that which causes rate sensitivity in the baropressure reflex.  相似文献   

9.
Inspiratory muscle activity increases when lung volume is increased by continuous positive-pressure breathing in conscious human subjects (Green et al., Respir. Physiol. 35: 283-300, 1978). Because end-tidal CO2 pressure (PETCO2) does not change, these increases have not been attributed to chemoreflexes. However, continuous positive-pressure breathing at 20 cmH2O influences the end-tidal to arterial CO2 pressure differences (Folkow and Pappenheimer, J. Appl. Physiol. 8: 102-110, 1955). We have compared PETCO2 with arterial CO2 pressure (PaCO2). We have compared PETCO2 with arterial CO2 pressure (PaCO2) in healthy human subjects exposed to continuous positive airway pressure (10 cmH2O) or continuous negative pressure around the torso (-15 cmH2O) sufficient to increase mean lung volume by about 650 ml. The difference between PETCO2 and PaCO2 was not decreased, and we conclude that PETCO2 is a valid measure of chemical drive to ventilation in such circumstances. We observed substantial increases in respiratory muscle electromyograms during pressure breathing as seen previously and conclude this response must originate by proprioception. On average, the compensation of tidal volume thus afforded was complete, but the wide variability of individual responses suggests that there was a large cerebral cortical component in the responses seen here.  相似文献   

10.
Arterial-alveolar equilibration of CO2 during exercise was studied by normoxic CO2 rebreathing in six dogs prepared with a chronic tracheostomy and exteriorized carotid loop and trained to run on a treadmill. In 153 simultaneous measurements of PCO2 in arterial blood (PaCO2) and end-tidal gas (PE'CO2) obtained in 46 rebreathing periods at three levels of mild-to-moderate steady-state exercise, the mean PCO2 difference (PaCO2-PE'CO2) was -1.0 +/- 1.0 (SD) Torr and was not related to O2 uptake or to the level of PaCO2 (30-68 Torr). The small negative PaCO2-PE'CO2 is attributed to the lung-to-carotid artery transit time delay which must be taken into account when both PaCO2 and PE'CO2 are continuously rising during rebreathing (average rate 0.22 Torr/s). Assuming that blood-gas equilibrium for CO2 was complete, a lung-to-carotid artery circulation time of 4.6 s accounts for the observed uncorrected PaCO2-PE'CO2 of -1.0 Torr. The results are interpreted to indicate that in rebreathing equilibrium PCO2 in arterial blood and alveolar gas are essentially identical. This conclusion is at variance with previous studies in exercising humans during rebreathing but is in full agreement with our recent findings in resting dogs.  相似文献   

11.
Hypercapnia attenuates the effects of static airway pressure (Paw) on phrenic burst frequency (f) and the expiratory duration (TE) in chloralose-urethan-anesthetized dogs. Surgical removal of the carotid bodies abolishes this interaction. Since halothane anesthesia in hyperoxia greatly impairs peripheral chemoreflexes, experiments were conducted to determine whether hypercapnia would attenuate the effects of Paw on f and TE in halothane-anesthetized dogs (approximately 1.5 minimum alveolar concentration). Integrated activity of the phrenic nerve was monitored as a function of Paw (2-12 cmH2O) in a vascularly isolated left lung at varied levels of arterial PCO2 (PaCO2; 38-80 Torr) controlled by inspired gas concentrations ventilating the denervated but perfused right lung. Halothane was administered only to the right lung. The results were as follows: 1) integrated phrenic amplitude increased with PaCO2 but was unaffected by Paw; 2) f decreased as Paw increased but was not affected by PaCO2; 3) the inspiratory duration (TI) increased as PaCO2 increased but was unaffected by Paw; 4) TE increased as Paw increased but was unaffected by PaCO2; and 5) there was no phrenic response to intravenous sodium cyanide (50-100 micrograms/kg). Thus, unlike chloralose-urethan-anesthetized dogs, hypercapnia does not attenuate the effect of lung inflation on f or TE in halothane-anesthetized dogs. Furthermore, hypercapnia increases TI during halothane anesthesia, an effect found after carotid denervation but not found in intact chloralose-urethan-anesthetized dogs. It is suggested that these differences between chloralose-urethan- and halothane-anesthetized dogs may be due to functional carotid chemoreceptor denervation by halothane.  相似文献   

12.
Ventilation-perfusion changes after right-sided pulmonary contusion (PC) in swine were investigated by means of the multiple inert gas elimination technique (MIGET). Anesthetized swine (injury, n = 8; control, n = 6) sustained a right-chest PC by a captive-bolt apparatus. This was followed by a 12-ml/kg hemorrhage, resuscitation, and reinfusion of shed blood. MIGET and thoracic computed tomography (CT) were performed before and 6 h after injury. Three-dimensional CT scan reconstruction enabled determination of the combined fractional volume of poorly aerated and non-aerated lung tissue (VOL), and the mean gray-scale density (MGSD). Six hours after PC in injured animals, Pa(O(2)) decreased from 234.9 +/- 5.1 to 113.9 +/- 13.0 mmHg. Shunt (Q(S)) increased (2.7 +/- 0.4 to 12.3 +/- 2.2%) at the expense of blood flow to normal ventilation/perfusion compartments (97.1 +/- 0.4 to 87.4 +/- 2.2%). Dead space ventilation (V(D)/V(T)) increased (58.7 +/- 1.7% to 67.2 +/- 1.2%). MGSD increased (-696.7 +/- 6.1 to -565.0 +/- 24.3 Hounsfield units), as did VOL (4.3 +/- 0.5 to 33.5 +/- 3.2%). Multivariate linear regression of MGSD, VOL, V(D)/V(T), and Q(S) vs. Pa(O(2)) retained VOL and Q(S) (r(2) = .835) as independent covariates of Pa(O(2)). An increase in Q(S) characterizes lung failure 6 h after pulmonary contusion; Q(S) and VOL correlate independently with Pa(O(2)).  相似文献   

13.
The cardiorespiratory responses were examined in yellowtail, Seriola quinqueradiata exposed to two levels of hypercapnia (seawater equilibrated with a gas mixture containing 1% CO(2) (water PCO(2) = 7 mmHg) or 5% CO(2) (38 mmHg)) for 72 hr at 20 degrees C. Mortality was 100% within 8 hr at 5% CO(2), while no fish died at 1% CO(2). No cardiovascular variables (cardiac output, Q; heart rate, HR; stroke volume, SV and arterial blood pressure, BP) significantly changed from pre-exposure values during exposure to 1% CO(2). Arterial CO(2) partial pressure (PaCO(2)) significantly increased (P < 0.05), reaching a new steady-state level after 3 hr. Arterial blood pH (pHa) decreased initially (P < 0.05), but was subsequently restored by elevation of plasma bicarbonate ([HCO(3)(-)]). Arterial O(2) partial pressure (PaO(2)), oxygen content (CaO(2)), and hematocrit (Hct) were maintained throughout the exposure period. In contrast, exposure to 5% CO(2) dramatically reduced Q (P < 0.05) through decreasing SV (P < 0.05), although HR did not change. BP was transiently elevated (P < 0.05), followed by a precipitous fall before death. The pHa was restored incompletely despite a significant increase in [HCO(3)(-)]. PaO(2) decreased only shortly before death, whereas CaO(2) kept elevated due to a large increase in Hct (P < 0.05). We tentatively conclude that cardiac failure is a primary physiological disorder that would lead to death of fish subjected to high environmental CO(2) pressures.  相似文献   

14.
High-frequency chest percussion (HFP) with constant fresh gas flow (VBF) at the tracheal carina is a variant of high-frequency ventilation (HFV) previously shown to be effective with extremely low tracheal oscillatory volumes (approximately 0.1 ml/kg). We studied the effects of VBF on gas exchange during HFP. In eight anesthetized and paralyzed dogs we measured arterial and alveolar partial pressures of CO2 (PaCO2) and O2 (PaO2) during total body vibration at a frequency of 30 Hz, amplitude of 0.17 +/- 0.019 cm, and tidal volume of 1.56 +/- 0.58 ml. VBF was incrementally varied from 0.1 to 1.2 l.kg-1.min-1. At low flows (0.1-0.4 l.kg-1.min-1), gas exchange was strongly dependent on flow rate but became essentially flow independent with higher VBF (i.e., hyperbolic pattern). At VBF greater than 0.4 l.kg-1.min-1, hyperventilatory blood gas levels were consistently sustained (i.e., PaCO2 less than 20 Torr, PaO2 greater than 90 Torr). The resistance to CO2 transport of the airways was 1.785 +/- 0.657 l-1.kg.min and was independent of VBF. The alveolar-arterial difference of O2 was also independent of the flow. In four of five additional dogs studied as a control group, where constant flow of O2 was used without oscillations, the pattern of PaCO2 vs. VBF was also hyperbolic but at substantially higher levels of PaCO2. It is concluded that, in the range of VBF used, intraairway gas exchange was limited by the 30-Hz vibration. The fresh gas flow was important only to maintain near atmospheric conditions at the tracheal carina.  相似文献   

15.
To investigate the mechanisms responsible for the difference in gas exchange during constant-flow ventilation (CFV) when using gases with different physical properties, we used mixtures of 70% N2-30% O2 (N2-O2) and 70% He-30% O2 (He-O2) as the insufflating gases in 12 dogs. All dogs but one had higher arterial PCO2 (PaCO2) with He-O2 compared with N2-O2. At a flow of 0.37 +/- 0.12 l/s, the mean PaCO2's with N2-O2 and He-O2 were 41.3 +/- 13.9 and 53.7 +/- 20.3 Torr, respectively (P less than 0.01); at a flow rate of 0.84 +/- 0.17 l/s, the mean PaCO2's were 29.1 +/- 11.3 and 35.3 +/- 13.6 Torr, respectively (P less than 0.01). The chest was then opened to alter the apposition between heart and the lungs, thereby reducing the extent of cardiogenic oscillations by 58.4 +/- 18.4%. This intervention did not significantly alter the difference in PaCO2 between N2-O2 and He-O2 from that observed in the intact animals, although the individual PaCO2 values for each gas mixture did increase. When the PaCO2 was plotted against stagnation pressure (rho V2), the difference in PaCO2 between N2-O2 and He-O2 was nearly abolished in both the closed- and open-chest animals. These findings suggest that the different PaCO2's obtained by insufflating gases with different physical properties at a fixed flow rate, catheter position, and lung volume result mainly from a difference in the properties of the jet.  相似文献   

16.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

17.
Cardiovascular drift (CVD) can be defined as a progressive increase in heart rate (HR), decreases in stroke volume (SV) and mean arterial pressure (MAP), and a maintained cardiac output (Q) during prolonged exercise. To test the hypothesis that the magnitude of CVD would be related to changes in skin blood flow ( SkBF ), eight healthy, moderately trained males performed 70-min bouts of cycle ergometry in a 2 X 2 assortment of airflows (less than 0.2 and 4.3 m X s-1) and relative work loads (43.4% and 62.2% maximal O2 uptake). Ambient temperature and relative humidity were controlled to mean values of 24.2 +/- 0.8 degrees C and 39.5 +/- 2.4%, respectively. Q, HR, MAP, SkBF , skin and rectal temperatures, and pulmonary gas exchange were measured at 10-min intervals during exercise. Between the 10th and 70th min during exercise at the higher work load with negligible airflow, HR and SkBF increased by 21.6 beats X min-1 and 14.0 ml X 100 ml-1 X min-1, respectively, while SV and MAP decreased by 16.4 ml and 11.3 mmHg. The same work load in the presence of 4.3 m X s-1 airflow resulted in nonsignificant changes of 7.6 beats X min-1, 4.0 ml X (100 ml-1 X min)-1, -2.7 ml, and -1.7 mmHg for HR, SkBF , SV, and MAP. Since nonsignificant changes in HR, SkBF , SV, and MAP were observed at the lower work load in both airflow conditions, the results emphasize that CVD occurs only in conditions which combine high metabolic and thermal circulatory demands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
There is a linear relationship between the PaCO2 and blood hydrogen ion concentration in normal dogs, but for theoretical reasons to be discussed, we questioned whether this relationship would apply in animals with metabolic acidosis or alkalosis. To study this in more detail, animals were divided into three groups: normal, metabolically acidotic, and metabolically alkalotic. Following anesthesia and bilateral ureteral ligation, dogs were intubated and ventilated to produce acute steady state PaCO2 values corresponding to the range observed during disease states. Changes in the volume and electrolyte composition of the gastrointestinal fluid and urine as well as the concentration and distribution of lactate were evaluated in all experiments. We observed the previously described linear relationship between the PaCO2 and blood hydrogen ion concentration in normal dogs, but the slope of the regression line differed significantly from those of dogs with metabolic acidosis and metabolic alkalosis. On the other hand, there was a consistent relationship between the ratio of the PaCO2 values, but not the absolute PaCO2, and the change in the plasma bicarbonate concentration over a wide range of PaCO2 values in all groups of dogs. The chemical basis for these observations will be discussed.  相似文献   

19.
Extravascular thermal volume of the lung (ETVL) is a double indicator dilution technique of use in measuring pulmonary edema. ETVL and lung mechanics measurements were followed to find a less invasive monitor of pulmonary edema than the double indicator dilution technique. Pulmonary edema was induced by overloading the dogs' circulation with dextran. Phases of overload were defined on the basis of a previous electron microscopic study (Noble et al., Can. Anesthetists Soc. J. 21:275, 1974) of lung biopsies relating anatomic changes to physiologic measurements of ETVL and central blood volume (CBV). Congestion occurred when CBV was elevated and ETVL was not, interstitial edema when ETVL was elevated but smaller than 60% above control and alveolar edema when ETVL greater than 85% above control. Once the dogs were in alveolar edema, they were mechanically ventilated with 4, 8, 12, and 16 cmH2O end-tidal pressure (CPPV). Mean functional residual capacity (FRC) for all 15 dogs did not change up to the time CPPV was applied. Pulmonary resistance did not rise until alveolar edema was present. Once in pulmonary edema, lung compliance always fell as lung water increased. In individual dogs, the compliance fall was directly proportional to the rising lung water. However, the variations in slope and beginning point among dogs made it difficult to predict the amount of lung water from dynamic compliance values. PaO2 fell markedly in alveolar edema as a result of a widened A-a gradient. CPPV did not decrease lung water but did increase FRC and PaO2.  相似文献   

20.
The effect of i.v. bolus administration of PGE2 and PGF2 alpha on carotid blood flow (Q) and mean arterial blood pressure (MAP) was recorded in 21 anaesthetized normotensive control (N) and 12 rats with 1K1C renovascular hypertension (RH). From the measured parameters the regional vascular impedance (PVI) and the change in blood volume were calculated. In normotensive animals both PGs elicited a dose-dependent initial fast increase of Q (threshold dose 0.4 ng/kg) and a decrease of MAP and PVI (threshold dose 0.4 micrograms/kg). Subsequently, Q decreased below the initial level. MAP and PVI remained depressed after E2 but increased after F2 alpha. The time course of the Q and MAP responses was analyzed in more detail at a standard dose 4 micrograms/kg. The average time to peak of the first phase was 12 s and of the second approximately 80 s. The initial levels of Q and MAP were reestablished within 3 to 4 minutes. The total volume of carotid blood flow obtained by planimetric integration was unaltered after F2 alpha but depressed after E2. In hypertensive animals both phases of the response to E2 were significantly retarded and the Q response was nearly abolished. On the other hand, the time course of the reaction to F2 alpha was unchanged but the magnitude of the second pressoric phase was reduced. Thus, the capacity of the carotid vascular bed to dilate remains the same in RH while the ability to constrict is limited. It is concluded that the response of MAP and Q to both PGs are relatively independent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号