首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A methanogenic mixed population in a packed-bed reactor completely transformed 1,1,1-trichloroethane (10 μM) to chloroethane by a cometabolic process. Chloroethane was not further transformed. Acetate and methanol served as electron donors. Complete transformation of 1,1,1-trichloroethane to chloroethane only occurred when sufficient electron donor was fed into the reactor. Otherwise, besides chloroethane, 1,1-dichloroethane was also found as a product. The products of 1,1,1-trichloroethane transformation also depended on the type of electron donor present. With acetate, the degree of dechlorination was higher, i.e. more 1,1,1-trichloroethane was transformed to chloroethane than with methanol. In an enrichment culture obtained from the reactor contents, 1,1,1-trichloroethane was only transformed to 1,1-dichloroethane and was not further metabolized. Methanol, acetate, formate, ethanol, 2-propanol, trimethylamine and H2, but not dimethylamine and methylamine, served as electron donors for 1,1,1-trichloroethane transformation by this enrichment culture. Both nitrate and nitrite inhibited 1,1,1-trichloroethane transformation; while nitrate completely inhibited 1,1,1-trichloroethane dechlorination, some conversion did occur in the presence of nitrite. The product(s) of this conversion remain unknown, since no chlorinated hydrocarbons were detected. Received: 19 June 1998 / Received revision: 14 September 1998 / Accepted: 17 September 1998  相似文献   

2.
The fate of thiocyanate (SCN) and cyanate (OCN) under methanogenic conditions was investigated at 35 °C. Thiocyanate and cyanate were added to mixed methanogenic cultures along with an organic mixture. Thiocyanate was stable under these conditions, and had no adverse effect on methanogenesis at a concentration as high as 2.5 mM. In contrast, cyanate at a concentration as low as 0.3 mM initially inhibited methanogenesis but, after the complete removal of cyanate, methanogenesis gradually recovered. The inhibitory effect of cyanate on methanogenesis became more profound with repeated additions of cyanate. The transformation of cyanate followed the hydrolytic route to ammonia and bicarbonate under anaerobic conditions and its hydrolysis rate was enhanced by microbial activity. Cyanide was not detected as a cyanate transformation product under the methanogenic conditions of this study. Received: 13 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

3.
The wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C. At both temperatures the volatile solids loading was increased from 1 g l−1 day−1 to 9.65 g l−1 day−1, by reducing the nominal hydraulic retention time from 93 days to 19 days. The volatile solids removal in the reactors at both temperatures for the same loading rates was in a similar range and was still 65% at 19 days hydraulic retention time. Although more biogas was produced in the thermophilic reactor, the energy conservation in methane was slightly lower, because of a lower methane content, compared to the biogas of the mesophilic reactor. The slightly lower amount of energy conserved in the methane of the thermophilic digester was presumably balanced by the hydrogen that escaped into the gas phase and thus was no longer available for methanogenesis. In the thermophilic process, 1.4 g/l ammonia was released, whereas in the mesophilic process only 1 g/l ammonia was generated, presumably from protein degradation. Inhibition studies of methane production and glucose fermentation revealed a K i (50%) of 3 g/l and 3.7 g/l ammonia (equivalent to 0.22 g/l and 0.28 g/l free NH3) at 37 °C and a K i (50%) of 3.5 g/l and 3.4 g/l ammonia (equivalent to 0.69 g/l and 0.68 g/l free NH3) at 55 °C. This indicated that the thermophilic flora tolerated at least twice as much of free NH3 than the mesophilic flora and, furthermore, that the thermophilic flora was able to degrade more protein. The apparent ammonia concentrations in the mesophilic and in the thermophilic biowaste reactor were low enough not to inhibit glucose fermentation and methane production of either process significantly, but may have been high enough to inhibit protein degradation. The data indicated either that the mesophilic and thermophilic protein degraders revealed a different sensitivity towards free ammonia or that the mesophilic population contained less versatile protein degraders, leaving more protein undegraded. Received: 26 March 1997 / Received revision: 13 May 1997 / Accepted: 19 May 1997  相似文献   

4.
Removal of tetrachloroethylene (perchloroethylene; C2Cl4) by microbial consortia from two sites with different C2Cl4 exposure histories was examined in a bench-scale anaerobic column bioreactor. It was hypothesized that optimal removal would be observed in the reactor packed with sediments having an extensive exposure history. Microbial consortia were enriched from hyporheic-zone (HZ) sediments from the Portneuf aquifer near Pocatello, Idaho, and from industrial-zone (IZ) sediments from a highly contaminated aquifer in Portland, Oregon. Lactate and acetate were the electron donors during experiments conducted over 9 and 7 months for HZ and IZ sediments, respectively. In the HZ bioreactor, the retention time ranged from 31 h to 81 h, and inlet C2Cl4 concentrations ranged from 0.1 ppm to 1.0 ppm. Dechlorination of C2Cl4 averaged 60% and reached a maximum of 78%. An increase in C:N from 27:1 to 500:1 corresponded to an 18% increase in removal efficiency. Trichloroethylene production corresponded to decreased effluent C2Cl4; further intermediates were not detected. In the IZ bioreactor, the retention time varied from 34 h to 115 h; the inlet C2Cl4 concentration was 1.0 ppm. C2Cl4 removal averaged 70% with a maximum of 98%. Trichloroethylene and cis-dichloroethylene were detected in the effluent. Increases in C:N from 50:1 to 250:1 enhanced dechlorination activity. Received: 3 February 1997 / Received revision: 15 May 1997 / Accepted: 1 June 1997  相似文献   

5.
Continuous hydrogen gas evolution by self-flocculated cells of Enterobacter aerogenes, a natural isolate HU-101 and its mutant AY-2, was performed in a packed-bed reactor under glucose-limiting conditions in a minimal medium. The flocs that formed during the continuous culture were retained even when the dilution rate was increased to 0.9 h−1. The H2 production rate increased linearly with increases in the dilution rate up to 0.67 h−1, giving maximum H2 production rates of 31 and 58 mmol l−1 h−1 in HU-101 and AY-2 respectively, at a dilution rate of more than 0.67 h−1. The molar H2 yield from glucose in AY-2 was maintained at about 1.1 at dilution rates between 0.08 h−1 and 0.67 h−1, but it decreased rapidly at dilution rates more than 0.8 h−1. Received: 27 August 1997 / Received revision: 11 November 1997 / Accepted: 14 December 1997  相似文献   

6.
Biofilm reactors are particularly suitable for the treatment of large amounts of diluted effluent, such as groundwater contaminated with scarcely soluble pollutants. A packed-bed column reactor was tested for the degradation of acenaphthene, phenanthrene and pyrene provided at their aqueous solubility concentrations. Acenapthene and phenanthrene were removed to more than 99% efficiency from this reactor whilst pyrene was removed to 90%. Pollutant disappearance was also recorded in the control reactor and was probably caused by the adsorption of pollutants into the reactor. The measurement of oxygen consumption in both reactors confirmed that microbial degradation of the pollutants was indeed occurring in the inoculated reactor. Physical adsorption is not however unwanted, as it could help with the formation of a biofilm at an early stage of the treatment. Received: 29 February 2000 / Received revision: 30 May 2000 / Accepted: 3 June 2000  相似文献   

7.
A whey solution was used as a substrate for methane production in an anaerobic fixed-bed reactor. At a hydraulic retention time of 10 days, equivalent to a space loading of 3.3 kg (m3 day)−1, 90% of the chemical oxygen demand was converted to biogas. Only a little propionate remained in the effluent. Toxicity tests with either copper chloride, zinc chloride or nickel chloride were performed on effluent from the reactor. Fifty per cent inhibition of methanogenesis was observed in the presence of ≥10 mg CuCl2 l−1≥40 mg ZnCl2 l−1 and ≥60 mg NiCl2 l−1, respectively. After exposure to Cu2+, Zn2+ or Ni2+ ions for 12 days, complete recovery of methanogenesis by equimolar sulfide addition was possible upon prolonged incubation. Recovery failed, however, for copper chloride concentrations ≥40 mg l−1. If the sulfide was added simultaneously with the three heavy metal salts, methanogenesis was only slightly retarded and the same amount of methane as in non-inhibited controls was reached either 1 day (40 mg ZnCl2 l−1) or 2 days later (10 mg CuCl2 l−1). Up to 60 mg NiCl2 l−1 had no effect if sulfide was present. Sulfide presumably precipitated the heavy metals as metal sulfides and by this means prevented heavy metal toxicity. Received: 8 October 1999 / Received revision: 3 January 2000 / Accepted: 4 January 2000  相似文献   

8.
A system is described that combines the fermentation of cellulose to acetate, CH4, and CO2 by Ruminococcus albus and Methanobrevibacter smithii with the fermentation of acetate to CH4 and CO2 by Methanosarcina barkeri to convert cellulose to CH4 and CO2. A cellulose-containing medium was pumped into a co-culture of the cellulolytic R. albus and the H2-using methanogen, Mb. smithii. The effluent was fed into a holding reservoir, adjusted to pH 4.5, and then pumped into a culture of Ms. barkeri maintained at constant volume by pumping out culture contents. Fermentation of 1% cellulose to CH4 and CO2 was accomplished during 132 days of operation with retention times (RTs) of the Ms. barkeri culture of 7.5–3.8 days. Rates of acetate utilization were 9.5–17.3 mmol l−1 day−1 and increased with decreasing RT. The K s for acetate utilization was 6–8 mM. The two-stage system can be used as a model system for studying biological and physical parameters that influence the bioconversion process. Our results suggest that manipulating the different phases of cellulose fermentation separately can effectively balance the pH and ionic requirements of the acid-producing phase with the acid-using phase of the overall fermentation. Received: 7 December 1999 / Received revision: 28 April 2000 / Accepted: 19 May 2000  相似文献   

9.
In a mesophilic (30–35 °C), sulphidogenic, ethanol-fed expanded-granular-sludge-blanket reactor, sulphate, at loading rates of up to 10.0–12.0 g Sl−1␣day−1, was removed with an average efficiency of more than 80%. The pH was between 7.7 and 8.3 and the maximal total dissolved sulphide concentration was up to 20 mM S (650 mg S/l). The alkaline pH was maintained by either a pH-control unit with sodium hydroxide or by stripping part of the sulphide and CO2 from the recycle with nitrogen gas. The superficial upstream liquid velocity (v up) was 3.0–4.5 m/h. The ratio of ethanol to sulphur was near stoichiometry. At alkaline pH, the activity of the acetotrophic sulphate-reducing bacteria, growing on acetate, was strongly enhanced, whereas at pH below 7.7 the acetotrophic sulphate-reducing bacteria were inhibited by aqueous H2S. With regard to the removal efficiency and operational stability, external stripping with N2 and pH control were equally successful. Received: 2 December 1996 / Received revision: 13 March 1997 / Accepted: 15 March 1997  相似文献   

10.
Peptostreptococcus productus ATCC35244, a reductive acetogenic strain, was added daily over 9 successive days to the fourth vessel (ascending colon) of the SHIME, a six-stage reactor system simulating the in vivo continuous culture conditions of the human gastro-intestinal tract. Final numbers of organisms (cfu)/ml reactor contents (c) were attained such that log10c = 6.9 ± 0.1. The addition caused the CH4 production to decrease below the detection limit while total gas and CO2 production in the fifth (transverse colon) and sixth reactor (descending colon) were lowered and the acetic acid concentration was augmented. Ending the supplementation caused CH4 production to re-establish within 4 days, while CO2 production increased much more slowly. The concentration of acetic acid only started to decrease after 7 days. The results indicate that P. productus, upon regular administration, is able to compete with methanogens for H2 in the gastro-intestinal microbial ecosystem because of its reductive acetogenic character. Received: 11 December 1996 / Received revision: 26 February 1997 / Accepted: 1 March 1997  相似文献   

11.
The dechlorination of carbon tetrachloride (CCl4) by free-living and attached bacteria under anaerobic conditions was studied to examine the relationship between porous media and electron donor. Two batch-type experiments, the free-living and attached bacterial systems, were conducted with and without addition of 0.5-mm glass beads. Glucose and acetate were selected as the primary electron donors because they are easily biodegradable. Direct epifluorescence technology, the DAPI (4′ 6-diamidino-2-phenylindole) method, was used for counting the microbial activities. Adding glass beads could accelerate the dechlorination rate of CCl4. Removals of 44 %–57 % were observed in free-living bacterial system. Whereas a two- to fivefold increase in the CCl4 dechlorination rate was observed in the attached system. Experimental results and thermodynamic calculations indicated that glucose is a better supplementary substrate than acetate for stimulating the dechlorinating capability of microorganisms because of its relatively high available free energy. A higher concentration of substrate provided more reducing power for attached bacteria to initiate the dechlorination reaction. The pseudo-first-order rate constants of CCl4 dechlorination ranged from 0.007 day−1 to 0.017 day−1 and from 0.011 day−1 to 0.0625 day−1 for free-living and attached bacterial systems respectively. Microscopic observation revealed a three- to eightfold difference of microbial number between the free-living and attached bacterial systems. On the basis of the results in this study, we can conclude that the presence of porous media and an electron donor can change the dechlorination capabilities of the microorganisms. This work will be valuable in the design of in situ bioremediation as it discusses the specific area of the medium and supplementation with an electron donor to stimulate the indigenous microflora. Received: 21 June 1996 / Received revision: 2 September 1996 / Accepted: 29 September 1996  相似文献   

12.
A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q s max) decreased in the order: PBRC (598 mg l−1 h−1) > PBR (PU, 471 mg l−1 h−1) > PBR (SG, 394 mg l−1 h−1) > FBR (PU, 161 mg l−1 h−1) > FBR (SG, 91 mg l−1 h−1). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100–200 μm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing. Received: 2 December 1999 / Revision received: 2 February 2000 / Accepted: 4 February 2000  相似文献   

13.
A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D 12/D 2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l−1) and with a lowered overall content of initial yeast extract (5  g l−1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 °C and a second stage at pH 6.0, a temperature change from 40 °C to 45 °C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h−1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l−1 for lactic acid concentration and 9.72 g l−1 h−1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l−1  and 2.42 g l−1 h−1) respectively and the highest overall l(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). Received: 4 December 1997 / Received revision: 23 February 1998 / Accepted: 14 March 1998  相似文献   

14.
The influence of low temperature (5–29 °C) on the methanogenic activity of non-adapted digested sewage sludge and on temperature/leachate-adapted biomass was assayed by using municipal landfill leachate, intermediates of anaerobic degradation (propionate) and methane precursors (acetate, H2/CO2) as substrates. The temperature dependence of methanogenic activity could be described by Arrhenius-derived models. However, both substrate and adaptation affected the temperature dependence. The adaptation of biomass in a leachate-fed upflow anaerobic sludge-blanket reactor at approximately 20 °C for 4 months resulted in a sevenfold and fivefold increase of methanogenic activity at 11 °C and 22 °C respectively. Both acetate and H2/CO2 were methanized even at 5 °C. At 22 °C, methanogenic activities (acetate 4.8–84 mM) were 1.6–5.2 times higher than those at 11 °C. The half-velocity constant (K s) of acetate utilization at 11 °C was one-third of that at 22 °C while a similar K i was obtained at both temperatures. With propionate (1.1–5.5 mM) as substrate, meth‐anogenic activities at 11 °C were half those at 22 °C. Furthermore, the residual concentration of the substrates was not dependent on temperature. The results suggest that the adaptation of biomass enables the achievement of a high treatment capacity in the anaerobic process even under psychrophilic conditions. Received: 23 December 1996 / Received last revision: 18 June 1997 / Accepted: 23 June 1997  相似文献   

15.
  Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored. Tetrachloroethene was reductively dechlorinated to trichloroethene, which again was dechlorinated at the same rate as DCE was produced. DCE showed a lag period of 40 h before transformation was observed. During normal reactor operation trans-1,2-DCE was the major DCE isomer, followed by cis-1,2-DCE. Small amounts of 1,1-DCE but no vinyl chloride were detected. When the influent tetrachloroethene concentration was increased from 4.6 μM to 27 μM, the transformation rate increased, indicating that the system was not saturated with tetrachloroethene. The main organic component in the effluent was acetate, indicating that the aceticlastic methane-producing bacteria were inhibited by the chlorinated ethenes. Received: 29 July 1996 / Received revision: 13 September 1996 / Accepted: 13 September 1996  相似文献   

16.
The carbon and electron flow pathways and the bacterial populations responsible for the transformation of H2-CO2, formate, methanol, methylamine, acetate, ethanol, and lactate were examined in eutrophic sediments collected during summer stratification and fall turnover. The rate of methane formation averaged 1,130 μmol of CH4 per liter of sediment per day during late-summer stratification versus 433 μmol of CH4 per liter of sediment per day during the early portion of fall turnover, whereas the rate of sulfate reduction was 280 μmol of sulfate per liter of sediment per day versus 1,840 μmol of sulfate per liter of sediment per day during the same time periods, respectively. The sulfate-reducing population remained constant while the methanogenic population decreased by one to two orders of magnitude during turnover. The acetate concentration increased from 32 to 81 μmol per liter of sediment while the acetate transformation rate constant decreased from 3.22 to 0.70 per h, respectively, during stratification versus turnover. Acetate accounted for nearly 100% of total sedimentary methanogenesis during turnover versus 70% during stratification. The fraction of 14CO2 produced from all 14C-labeled substrates examined was 10 to 40% higher during fall turnover than during stratification. The addition of sulfate, thiosulfate, or sulfur to stratified sediments mimicked fall turnover in that more CO2 and CH4 were produced. The addition of Desulfovibrio vulgaris to sulfate-amended sediments greatly enhanced the amount of CO2 produced from either [14C]methanol or [2-14C]acetate, suggesting that H2 consumption by sulfate reducers can alter methanol or acetate transformation by sedimentary methanogens. These data imply that turnover dynamically altered carbon transformation in eutrophic sediments such that sulfate reduction dominated over methanogenesis principally as a consequence of altering hydrogen metabolism.  相似文献   

17.
A reaction chamber was developed to determine the respiratory activity of microorganisms immobilized on various support materials for waste gas treatment. The volumetric respiration rate was identified as a suitable parameter for estimating the degradative activity of waste gas treatment plants. A laboratory trickle-bed reactor was filled with either granular clay, polyamide beads, or sintered styrofoam. n-Butanol was used as model solvent to determine the efficiency of its elimination from the gas phase. This crucial parameter was correlated with the volumetric degradation rate, determined from the overall material balance under steady-state operating conditions. The volumetric respiration rate of n-butanol was determined with the reaction chamber, and exceeded the volumetric degradation rate of n-butanol determined from the reactor 16- to 26-fold, depending on the support material. The respiration rate was correlated to the degradation rate by the stoichiometry of n-butanol oxidation and a correlation factor of 2.6–4.3. The volumetric respiration rate appeared to be a suitable parameter to determine the degradative activity of the trickle-bed reactor used. The volumetric respiration rate can be ultimately applied to estimate the efficiency of elimination of an organic pollutant and to calculate the dimensions of a reactor required to eliminate a given organic load from waste gas. Received: 20 February 1997 / Received revision: 20 May 1997 / Accepted: 20 May 1997  相似文献   

18.
High rates of methanogenesis from acetate and ATP were observed from cell-free extracts of the thermophilic acetotrophic methanogen Methanothrix (Methanosaeta) thermophila strain CALS-1 when cultures were grown in a pH auxostat fed with acetic acid. Specific methanogenic activities ranged from 50–300 nmol min–1 (mg protein)–1, which was comparable to those for whole cells. In contrast to results with Methanosarcina spp., the reaction did not require high levels of H2 in the headspace. CO was inhibitory to methanogenesis from acetate. The inhibition by CO and the lack of effect of H2 on methanogenesis from acetate resemble previous results with whole cells of CALS-1. Protein concentrations in extracts > 5 mg/ml were required for good activity, and the optimum temperature for the methanogenesis was near 65° C. ATP was required in substrate quantities and was converted mainly to AMP. The maximum CH4/ATP stoichiometry obtained was near 1.0, consistent with acetate activation using an acetyl-CoA synthetase mechanism that converts ATP to AMP and pyrophosphate. Methanogenesis in extracts was inhibited by bromoethane sulfonate and cyanide, indicating the involvement of methylcoenzyme M methylreductase and a carbon monoxide dehydrogenase complex with methanogenesis from acetate. These results are consistent with acetyl-coenzyme A (CoA) as the form of activated acetate involved in methanogenesis from acetate in strain CALS-1, but no activity could be obtained from extracts using acetyl-CoA as a substrate. Received: 18 March 1996 / Accepted: 14 June 1996  相似文献   

19.
We report here a counter-selectable marker system for genetic transformation of the yeast Schwanniomyces alluvius, based on the complementation of uracil auxotrophs defective in either orotidine-5′-phosphate decarboxylase (URA3) or orotidine-5′-pyrophosphatase (URA5). Uracil auxotrophs of S. alluvius were obtained by ethyl methanesulphonate mutagenesis and complemented using the ura3 gene from S. cerevisiae. A␣transformation frequency of approximately 104/μg DNA was obtained, which is tenfold higher than results described in earlier reports. Transformants were analysed by Southern blot hybridisation and were found to be mitotically stable. The extrachromosomal nature of the transforming DNA was confirmed by Southern hybridisation and plasmid rescue. The rescued plasmid DNA had a restriction pattern identical to that of the parent plasmid. Received: 19 August 1996 / Received last revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

20.
A chemiluminescence detector was used to measure the production of nitric oxide, NO, from the denitrifying bacteria Pseudomonas stutzeri. NO is an intermediate when P. stutzeri converts nitrate into nitrogen gas. The reaction between NO and ozone is selective and sensitive in generating chemiluminescence. Calibrations were made down to 1 nM, with a signal-to-noise ratio of 3. Bacteria were immobilised in alginate beads. Denitrification experiments were made in an anaerobic non-growth medium by adding nitrate to a certain concentration in the reactor. The bacteria were exposed to nitrate in the concentration range 1 pM–5 mM. The lowest concentration to give a measurable NO response was 100 nM. Received: 16 October 1997 / Received revision: 20 January 1998 / Accepted: 24 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号