首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saxiphilin is a soluble protein of unknown function which binds the neurotoxin, saxitoxin (STX), with high affinity. Molecular characterization of saxiphilin from the North American bullfrog, Rana catesbeiana, has previously shown that it is a member of the transferrin family. In this study we surveyed various animal species to investigate the phylogenetic distribution of saxiphilin, as detected by the presence of soluble [3H]STX binding activity in plasma, haemolymph or tissue extracts. We found that saxiphilin activity is readily detectable in a wide variety of arthropods, fish, amphibians, and reptiles. The pharmacological characteristics of [3H]STX binding activity in phylogenetically diverse species indicates that a protein homologous to bullfrog saxiphilin is likely to be constitutively expressed in many ectothermic animals. The results suggest that the saxiphilin gene is evolutionarily as old as an ancestral gene encoding bilobed transferrin, an Fe(2+)-binding and transport protein which has been identified in several arthropods and all the vertebrates which have been studied.  相似文献   

2.
The type 1 domain of thyroglobulin is a protein module (Thyr-1) that occurs in a variety of secreted and membrane proteins. Several examples of Thyr-1 modules have been previously identified as inhibitors of the papain family of cysteine proteinases. Saxiphilin is a neurotoxin-binding protein from bullfrog and a homolog of transferrin with a pair of such Thyr-1 modules located in the N-lobe. Saxiphilin is now characterized as a potent inhibitor of three cysteine proteinases as follows: papain, human cathepsin B, and cathepsin L. The stoichiometry of enzyme inhibition reveals that both Thyr-1 domains of saxiphilin inhibit papain (apparent K(i) = 1. 72 nm), but only one of these domains inhibits cathepsin B (K(i) = 1. 67 nm) and cathepsin L (K(i) = 0.02 nm). Physical association of saxiphilin and papain blocked from turnover at the active-site cysteine residue can be detected by cross-linking with glutaraldehyde. The rate of association of saxiphilin and cathepsin B is strongly pH-dependent with an optimum at pH 5.2, reflecting control by at least two H(+)-titratable groups. These results further demonstrate that various Thyr-1 domains are selective inhibitors of cysteine proteinases with utility in the study of protein interactions and degradation.  相似文献   

3.
Some species of puffer fish have been reported to possess both of tetrodotoxin and saxitoxin, which share one binding site on sodium channels. We purified a novel soluble glycoprotein that binds to these toxins from plasma of the puffer fish, Fugu pardalis, and named puffer fish saxitoxin and tetrodotoxin binding protein (PSTBP). PSTBP possessed a binding capacity of 10.6 +/- 0.97 nmol x mg(-1) protein and a K(d) of 14.6 +/- 0.33 nm for [(3)H]saxitoxin in equilibrium binding assays. [(3)H]Saxitoxin (10 nm) binding to PSTBPs was half-inhibited by the presence of tetrodotoxin and saxitoxin at 12 microm and 8.5 nm, respectively. From the results of gel filtration chromatography (200 kDa) and SDS/PAGE (104 kDa), PSTBP was suggested to consist of noncovalently linked dimers of a single subunit. PSTBP was completely deglycosylated by glycopeptidase F, producing a single band at 42 kDa. Two highly homologous cDNAs to each other coding PSTBP (PSTBP1 and PSTBP2, the predicted amino-acid identity 93%), were obtained from a cDNA library of F. pardalis liver. These proteins consisted to two tandemly repeated homologous domains. The predicted amino-acid sequences of PSTBP1 and 2 were not homologous to that of saxiphilin, a reported saxitoxin binding protein, or sodium channels, but their N-terminus sequences were homologous to that of the reported tetrodotoxin binding protein from plasma of Fugu niphobles, which has not been fully characterized. The partially homologous cDNA sequences to PSTBP1 and 2 were also found in expressed sequence tag clones of nontoxic flounders liver. Presumably, PSTBP is involved in accumulation and/or excretion of toxins in puffer fish.  相似文献   

4.
In a previous report, we have presented several lines of evidence, derived from widely different methodologies, suggesting that Leishmania has specific receptors for transferrin with a Kd similar to the mammalian transferrin receptor. This paper describes the identification, purification, and biochemical characterization of Leishmania transferrin receptor. The Leishmania transferrin receptor, detected on intact parasites by immunoperoxidase staining, was first identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blot analysis, using 125I-transferrin, as a 70-kDa protein. It has been isolated initially from Leishmania infantum promastigotes using affinity chromatography on a transferrin-Sepharose column and, subsequently, from Leishmania major promastigotes. The use of polyclonal antisera to the purified 70-kDa Leishmania transferrin receptor and to the purified rat transferrin receptor showed that the two receptors are antigenically distinct. The 70-kDa Leishmania transferrin receptor was subsequently characterized as an integral membrane glycoprotein. The monomeric state of the Leishmania transferrin receptor was demonstrated by gel filtration of purified receptor complexed with 125I-transferrin. Thus, the Leishmania transferrin receptor, unlike the mammalian receptor, is not a disulfide-linked dimer but a single 70-kDa polypeptide.  相似文献   

5.
Recombinant human single-chain urokinase (rscu-PA), two-chain urokinase (tcu-PA), and diisopropyl-fluorophosphate-treated tcu-PA (DFP-tcu-PA) bound to cultured human and porcine endothelial cells in a rapid, saturable, dose-dependent and reversible manner. Analysis of specific binding results in cultured human umbilical vein endothelial cells (HUVECs) gave the following estimated values for Kd and Bmax: 0.57 +/- 0.08 nM (mean +/- S.E.) and 188,000 +/- 18,000 sites/cell for 125I-labeled rscu-PA; 0.54 +/- 0.10 nM and 132,000 +/- 23,900 sites/cells for 125I-labeled tcu-PA; 0.89 +/- 0.14 nM and 143,000 +/- 30,300 sites/cell for 125I-labeled DFP-tcu-PA, respectively. Values for Kd were similar for primary and subcultured (six passages) HUVECs, but Bmax values were lower in subcultured HUVECs. Similar Kd values were found in cultured porcine endothelial cells; however, Bmax values varied depending on the endothelial cell type. All 125I-labeled urokinase forms yielded similar cross-linked approximately 110-kDa ligand-receptor complexes with cultured HUVECs, and 125I-labeled DFP-tcu-PA bound to a single major approximately 55-kDa protein in whole-cell lysates (ligand blotting/autoradiography), suggesting the presence of a single major approximately 55-kDa urokinase receptor in cultured HUVECs. The approximately 55-kDa urokinase receptor, isolated from several separate batches of cultured HUVECs (3-5 micrograms of protein, approximately 1 x 10(9) cells), by ligand affinity chromatography, exhibited the following properties: retained biologic activity as evidenced by its ability to bind 125I-labeled rscu-PA by ligand blotting/autoradiography and formation of a cross-linked 125I-labeled approximately 110-kDa rscu-PA-receptor complex; single-chain approximately 55-kDa protein, following reduction; complete conversion to and formation of a single major deglycosylated approximately 35-kDa protein, following treatment with N-glycanase.  相似文献   

6.
The molecular basis for binding of alpha-macroglobulin-proteinase complexes to the human two-chain 500/85-kDa (alpha/beta) alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein was analyzed. Ligand blotting experiments showed that a 40-kDa protein, present in the affinity-purified alpha 2MR preparation, is bound to the alpha 2MR alpha-chain and released by heparin. Removal of the 40-kDa protein resulted in a 3-5-fold increase in binding of alpha 2M-trypsin. Nitrocellulose-immobilized pure two-chain alpha 2MR was incubated with human alpha 2M-trypsin, containing four identical subunits, and two monovalent ligands: rat alpha 1-inhibitor-3-chymotrypsin and the 18-kDa receptor binding fragment of the alpha 2M subunit. Binding of alpha 2M-trypsin to the alpha-chain of immobilized alpha 2MR was composed of a high (Kd = 40 pM at 4 degrees C) and a low (Kd = 2 nM) affinity component. alpha 1-Inhibitor-3-chymotrypsin bound to the same sites but with one component (Kd = 0.4 nM). Competition-inhibition experiments and dissociation experiments, using ligands with different valences, as well as experiments with alpha 2MR immobilized at different densities, led to the following model. The low (Kd = 2 nM) affinity of alpha 2M-proteinase is prevalent when only one of the four domains binds to alpha 2MR, i.e. when the receptor density is low or when neighboring receptors are occupied. The high (Kd = 40 pM) affinity is achieved by binding of at least two domains to adjacent receptors.  相似文献   

7.
The voltage-dependent calcium channel from guinea-pig skeletal muscle T-tubules has been isolated with a rapid, two-step purification procedure. Reversible postlabelling of the channel-linked 1,4-dihydropyridine receptor and stereoselective photolabelling as a novel approach were employed to assess purity. A 135-fold purification to a specific activity of 1311 +/- 194 pmol/mg protein (determined by reversible equilibrium binding with (+)-[3H]PN200-110) was achieved. Three polypeptides of 155 kDa, 65 kDa and 32 kDa were identified in the purified preparation. The 155-kDa band is a glycoprotein. The arylazide photoaffinity probe (-)-[3H]azidopine bound with high affinity to solubilized membranes (Kd = 0.7 +/- 0.2 nM) and highly purified fractions (Kd = 3.1 +/- 2 nM), whereas the optical antipode (+)-azidopine was of much lower affinity. Irradiation of (-)-[3H]azidopine and (+)-[3H]azidopine receptor complexes with ultraviolet light led to preferential incorporation of the (-) enantiomer into the 155-kDa polypeptide in crude solubilized and purified preparations. The pharmacological profile of irreversible labelling of the 155-kDa glycoprotein by (-)-[3H]azidopine is identical to that found in reversible binding experiments. Specific photolabelling of the 155-kDa band by (-)-[3H]azidopine per milligram of protein increases 150-fold upon purification, whereas incorporation into non-specific bands in the crude solubilized material is identical for both, (-) and (+)-[3H]azidopine.  相似文献   

8.
A putative receptor protein for a hepta-beta-glucoside phytoalexin elicitor was identified by photoaffinity labeling of detergent-solubilized proteins from soybean root membranes. Incubation of partially purified beta-glucan-binding proteins with a photolabile 125I-labeled 2-(4-azidophenyl)ethyl-amino conjugate of the heptaglucoside elicitor, followed by irradiation with ultraviolet light (366 nm) resulted in specific labeling of a 70-kDa band in SDS/PAGE. Half-maximal inhibition of the 125I-labeling of the protein band by underivatized hepta-beta-glucoside was achieved by 15 nM heptaglucoside. Analysis of the affinity of radiolabel incorporation into the protein by ligand-saturation experiments, gave an apparent Kd value of 3 nM, in full agreement with the results from radioligand-binding studies. Good correlation was also observed between the amount of radiolabel incorporated into the protein and the binding activity of the fractions obtained at different stages in the purification of heptaglucoside-binding activity. Photoaffinity labeling of proteins purified by glucan-affinity chromatography showed the 70-kDa band as the main component along with weak 125I-labeling of a 100-kDa band. The 70-kDa band was also the major protein visualized by silver staining after SDS/PAGE of this fraction, suggesting that it is the predominant form of the heptaglucoside-binding proteins in detergent-solubilized soybean membranes.  相似文献   

9.
Formalin-fixed platelets have been used to study the binding of adenine nucleotides in order to avoid the complications of nucleotide metabolism and to achieve steady-state binding. Sp-adenosine-5'-(1-thiotriphosphate) (Sp-ATP-alpha-S) binds to platelets at two sites (Kd1 3 nM; 31,000 sites/platelet; Kd2 200 nM; 300,000 sites/platelet) as compared with values for ADP under these conditions (Kd1 30 nM; 25,000 sites/platelet and Kd2 3 microM; 400,000 sites/platelet) (bound/total approximately 0.1). Competition binding experiments showed that both of the ATP-alpha-S sites were accessible to ADP and vice versa. [35S]ATP-alpha-S was photoaffinity cross-linked to unfixed platelets by direct irradiation with ultraviolet light. A single radiolabeled component (120 kDa) was identified and shown to be identical with the alpha subunit of GPIIb based on two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blotting with anti-GPIIb monoclonal antibodies, by isoelectric focusing (pI 4.5-5.5), by immunoaffinity adsorption using monoclonal anti-GPIIb/IIIa antibodies coupled to Sepharose, and by crossed immunoelectrophoresis. Amino-terminal sequencing of a tryptic fragment labeled with [35S]ATP-alpha-S identified an 18-kDa domain beginning at Tyr-198 in the primary sequence of GPIIb alpha. These studies demonstrate the presence of an adenine nucleotide-binding site on GPIIb alpha.  相似文献   

10.
Utilizing a proteoliposome reconstitution system, we have purified the rat liver V1 vasopressin receptor to near homogeneity. The receptor was purified approximately 21,000-fold from rat liver membranes, using differential detergent solubilization, size exclusion gel filtration, lectin affinity, and ion-exchange chromatography. The purified receptor exhibits a Kd of 6 nM, when, prior to solubilization, the membranes were exposed to 1 microM vasopressin. This resulted in the association of a pertussis toxin-insensitive guanine nucleotide-binding protein with the receptor during most of the purification procedure. In the absence of this association, the receptor had a Kd of approximately 30 nM. Association of the receptor with a G-protein was confirmed by the ability of vasopressin to stimulate the hydrolysis of [gamma-32P]GTP. The specific activity of the vasopressin-stimulated hydrolysis was 25 nmol/min/mg, approximately 8,000-fold higher than values obtained with crude reconstituted receptor preparations. Cross-linking of 125I-vasopressin to a partially purified preparation of receptor demonstrated that the receptor had a molecular weight of approximately 68,000 under reducing conditions, and 58,000 under nonreducing conditions. The purification procedure may prove useful in purifying a number of small peptide hormone receptors (e.g. bradykinin, angiotensin II) and perhaps their associated G-proteins as well.  相似文献   

11.
Interaction of heparin with annexin V   总被引:5,自引:0,他引:5  
The energetics and kinetics of the interaction of heparin with the Ca2+ and phospholipid binding protein annexin V, was examined and the minimum oligosaccharide sequence within heparin that binds annexin V was identified. Affinity chromatography studies confirmed the Ca2+ dependence of this binding interaction. Analysis of the data obtained from surface plasmon resonance afforded a Kd of approximately 21 nM for the interaction of annexin V with end-chain immobilized heparin and a Kd of approximately 49 nM for the interaction with end-chain immobilized heparan sulfate. Isothermal titration calorimetry showed the minimum annexin V binding oligosaccharide sequence within heparin corresponds to an octasaccharide sequence. The Kd of a heparin octasaccharide binding to annexin V was approximately 1 microM with a binding stoichiometry of 1:1.  相似文献   

12.
Complex formation of human thrombospondin with osteonectin   总被引:9,自引:0,他引:9  
Human thrombospondin, a 450-kDa glycoprotein isolated from platelets and endothelial cells, specifically interacts with osteonectin, a protein of 30 kDa isolated from bovine bones and human platelets. Using ELISA, purified osteonectin binds to solid-phase-adsorbed thrombospondin with a dissociation constant (Kd) of 0.7 nM. Binding of thrombospondin to solid-phase-adsorbed osteonectin was also observed (Kd = 0.86 nM). The interaction of thrombospondin with solid-phase-adsorbed osteonectin was significantly decreased (81% inhibition) when using an excess of fluid-phase osteonectin. Thrombospondin-osteonectin complex formation was calcium-dependent as shown by a 50-80% inhibition in the presence of EDTA. None of the proteins known to interact with thrombospondin (fibrinogen, fibronectin, collagen, plasminogen) had a significant inhibitory effect on thrombospondin-osteonectin complex formation. This selective interaction was confirmed by affinity chromatography. Iodinated osteonectin, previously incubated with purified thrombospondin, specifically bound to an anti-thrombospondin monoclonal antibody (P10) linked to protein-A--Sepharose 4B. Elution of the anti-thrombospondin antibody from protein A allowed the recovery of the thrombospondin-osteonectin complex in the eluate, as judged by SDS/polyacrylamide gel electrophoresis and autoradiography. Blotting of purified thrombospondin to osteonectin adsorbed onto nitrocellulose further confirmed complex formation. In addition, when released from thrombin-stimulated platelets, thrombospondin and osteonectin bound to anti-thrombospondin IgG-coated plates indicating that osteonectin was complexed to thrombospondin once the platelet-release reaction has occurred.  相似文献   

13.
We report the purification of betaglycan, a low-abundance membrane proteoglycan with high affinity for transforming growth factor-beta (TGF-beta). Betaglycan solubilized from rat embryo membrane preparations was purified to near-homogeneity by sequential chromatography through DEAE-Trisacryl, wheat germ lectin-Sepharose, and TGF-beta 1-agarose. Purified betaglycan has properties similar to betaglycan affinity-labeled in intact cells: it binds TGF-beta 1 and TGF-beta 2 with KD approximately 0.2 nM, contains heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains and N-linked glycans attached to a 110-kDa core protein, and can spontaneously associate with phosphatidylcholine liposomes. The betaglycan core obtained by enzymatic removal of the GAG chains has high affinity for TGF-beta and associates with artificial liposomes, indicating that the core protein binds TGF-beta and anchors to membranes independently of the GAG chains present on the native protein or of any ancillary protein.  相似文献   

14.
Affinity chromatography of the muscarinic acetylcholine receptor   总被引:2,自引:0,他引:2  
A novel compound, 3-(2'-aminobenzhydryloxy)-tropane (ABT), and an ABT-agarose gel were synthesized and used for the purification of solubilized muscarinic receptors. ABT had a high affinity with an apparent dissociation constant (Kd) of 7 nM for the muscarinic receptors solubilized from the porcine brain by digitonin. An ABT-agarose gel was prepared by coupling ABT with epoxy-activated Sepharose 6B, and the degree of substitution to the gel was determined to be 4-5 mumol/ml of the gel by UV absorption spectrum. During affinity chromatography using 10 ml of the ABT-agarose gel and 100 ml of the digitonin-solubilized preparation, 70% of muscarinic receptors were adsorbed to the gel, in marked contrast with the adsorption of only 2% of proteins. Approximately 25% of muscarinic receptors applied to the gel were eluted biospecifically with 1 mM muscarinic ligands. The purified fraction showed a high affinity for [3H]quinuclidinyl benzylate with a Kd of 0.4 nM and similar specificity for muscarinic ligands to that of unpurified soluble receptors. The protein concentration of the purified fraction was too low to be determined accurately, but very approximately a purification of 10(3)-fold was indicated.  相似文献   

15.
A glycoprotein of 78,000 molecular mass (78 kDa), associated with the membrane of Leishmania infantum promastigotes, was identified and immunopurified by monoclonal antibody (mAb) LD9 produced against isolated membrane preparations. mAb LD9 was subsequently found to bind to human transferrin, also of 78 kDa. Binding of LD9 to transferrin was completely abolished when the mAb was preabsorbed by Leishmania membranes, thereby indicating that the 78-kDa Leishmania membrane-associated glycoprotein and transferrin have common antigenic epitope(s). The 78-kDa Leishmania membrane-associated protein was released in soluble nonaggregated form by mild treatment with acetic acid saline. Anti-transferrin polyclonal antibodies, recognized both the membrane-associated and the soluble form of the 78-kDa glycoprotein. The 78-kDa soluble form was characterized further as an iron-containing protein. The above data combined with iron uptake by promastigotes as demonstrated by the Prussian blue reaction indicate that the 78-kDa Leishmania membrane-associated glycoprotein is transferrin. The binding of 125I-human transferrin to Leishmania-purified membrane preparations was then investigated. The results indicate the presence of a high affinity saturable binding site (Kd = 2.2 10(-8) M) that is specific for transferrin. We suggest that the 78-kDa glycoprotein recognized by mAb LD9 is transferrin that binds to the surface of Leishmania promastigotes via a transferrin receptor.  相似文献   

16.
A peripheral membrane protein with a relative molecular mass of 93,000 Da is associated with cytoplasmic domains of the inhibitory glycine receptor of mammalian spinal cord. Here, evidence is given that this 93-kDa protein binds to polymerized tubulin. First, tubulin cofractionated with the 93-kDa protein upon affinity purification of the glycine receptor. Second, tubulin bound to the isolated 93-kDa protein in an overlay procedure. Third, in assays containing the purified glycine receptor, the 93-kDa protein as well as the glycine receptor alpha and beta subunits coassembled with tubulin and microtubules. The interaction of the 93-kDa protein with tubulin displayed high affinity (KD approximately 2.5 nM) and significant cooperativity (Hill coefficient approximately 2.1) and approached a stoichiometry of approximately 1:4 under saturating conditions. These data suggest that the 93-kDa protein anchors the glycine receptor at postsynaptic sites via binding to subsynaptic tubulin.  相似文献   

17.
The pig erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 64,000) on the basis of photoaffinity labelling experiments with the nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). This protein was purified 140-fold by treatment of haemoglobin-free erythrocytes 'ghosts' with EDTA (pH 11.2) to remove extrinsic proteins, extraction of the protein-depleted membranes with n-octyl-glucoside and subsequent gradient-elution ion-exchange chromatography on DEAE-cellulose. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the purified material revealed the presence of only two detectable protein bands, one which co-migrated with the radiolabelled NBMPR-binding protein, and a lower molecular weight species with an Mr of 43,000. The latter protein may be a degradation product of the band 3 anion-exchange transporter. The overall purification of the NBMPR-binding protein with respect to the Mr 64,000 band was 350-fold. Reversible NBMPR-binding to the partially-purified band 4.5 preparation was saturable (apparent Kd 7.2 nM). Adjustment of the chromatography conditions to allow elution of the NBMPR-binding protein along with the majority of solubilised membrane phospholipid reduced the apparent Kd value to 3.0 nM. Purification of reversible NBMPR-binding activity during ion-exchange chromatography was paralleled by an increase in the specific activity of nitrobenzylthioguanosine (NBTGR) -sensitive uridine transport as assayed in proteoliposomes reconstituted by a freeze-thaw-sonication procedure.  相似文献   

18.
125I-ANP (3-[125I] iodotyrosyl28) binding studies with purified rat glomerular membranes indicate two types of physiologically relevant hormonal receptors, Types I and II, Kd approximately 5 pM and approximately 2.5 nM, respectively. All preparations were essentially free of capsular and tubular contamination. Binding data indicated that Type I receptors were three times more concentrated than Type II receptors in purified membrane fractions. When purified membranes were cross-linked with 125I-rANP, using disuccinimidyl suberate and separated by SDS-PAGE, approximately 75- and approximately 140-kDa proteins were specifically labeled in a ratio of approximately 3:1, respectively. Thus, in purified renal glomerular membranes, Type I receptors with molecular weight of approximately 75-kDa appeared to predominate and would be detectably saturated at circulating ANP concentrations as low as 15 pg/ml. These findings could account for the exquisite sensitivity of natriuretic response to ANP.  相似文献   

19.
The human transferrin receptor (TfR) and its ligand, the serum iron carrier transferrin, serve as a model system for endocytic receptors. Although the complete structure of the receptor's ectodomain and a partial structure of the ligand have been published, conflicting results still exist about the magnitude of equilibrium binding constants, possibly due to different labeling techniques. In the present study, we determined the equilibrium binding constant of purified human TfR and transferrin. The results were compared to those obtained with either iodinated TfR or transferrin. Using an enzyme-linked assay for receptor-ligand interactions based on the published direct calibration ELISA technique, we determined an equilibrium constant of Kd=0.22 nM for the binding of unmodified human Tf to surface-immobilized human TfR. In a reciprocal experiment using soluble receptor and surface-bound transferrin, a similar constant of Kd=0.23 nM was measured. In contrast, covalent labeling of either TfR or transferrin with 125I reduced the affinity 3-5-fold to Kd=0.66 nM and Kd=1.01 nM, respectively. The decrease in affinity upon iodination of transferrin is contrasted by an only 1.9-fold decrease in the association rate constant, suggesting that the iodination affects rather the dissociation than the association kinetics. These results indicate that precautions should be taken when interpreting equilibrium and rate constants determined with covalently labeled components.  相似文献   

20.
Porphyrin accumulation by proliferating cells, e.g., those associated with cancers or wounds, tends to correlate with increased transferrin receptor density. To determine whether transferrin might be implicated in porphyrin transport, fluorescence and absorption spectroscopy were used to study the interaction of porphyrins with transferrin. A single high-affinity binding site for heme and other porphyrins (Kd approximately 20-25 nM) was detected by fluorescence spectroscopy. Difference spectroscopy revealed three additional heme-binding sites. These sites were distinct from the iron-binding sites: 1) Apotransferrin and diferric transferrin bound porphyrins with equal affinity; 2) 59Fe was not displaced from transferrin by porphyrins. Murine erythroleukemia cells incubated with [59Fe]hemin-[125I]transferrin internalized both labels concomitantly. Accumulation of [59Fe]hemin could be blocked by a 100-fold excess of diferric transferrin but not by apotransferrin. These results indicate that cells can internalize exogenous heme, and possibly porphyrins, bound to transferrin via its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号