首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five normal men, aged 20-30 years, participated in three types of exercise (I, II, III) of equal duration (20 min) and total external work output (120-180 kJ) separated by ten days of rest. Exercises consisted of seven sets of squats with barbells on the shoulders (I; Maximal Power Output Wmax = 600-900 W), continuous cycling at 50 rev X min-1 (II; Wmax = 100-150 W) and seven bouts of intermittent cycling at 70 rev X min-1 (III; Wmax = 300-450 W). Plasma cortisol, glucagon and lactate increased significantly (P less than 0.05) during the exercise and recovery periods of the anaerobic, intermittent exercise (I and III) but not in the continuous, aerobic exercise (II). No consistent significant changes were found in plasma glucose. Plasma insulin levels decreased only during exercise II. The highest increase in cortisol and glucagon was not associated with the highest VE, VO2, Wmax or HR; however it was associated with the anaerobic component of exercise (lactic acid). It is suggested that in exercises of equal duration and total external work output, the continuous, aerobic exercise (II) led to lowest levels of glucogenic hormones.  相似文献   

2.
In this study, an oral glucose load was enriched with a [U-(13)C]glucose tracer to determine differences in substrate utilization between endurance-trained (T) and untrained (UT) subjects during submaximal exercise at the same relative and absolute workload when glucose is ingested. Six highly trained cyclists/triathletes [maximal workload (Wmax), 400 +/- 9 W] and seven UT subjects (Wmax, 296 +/- 8 W) were studied during 120 min of cycling exercise at 50% Wmax ( approximately 55% maximal O(2) consumption). The T subjects performed a second trial at the mean workload of the UT group (148 +/- 4 W). Before exercise, 8.0 ml/kg of a (13)C-enriched glucose solution (80 g/l) was ingested. During exercise, boluses of 2.0 ml/kg of the same solution were administered every 15 min. Measurements were made in the 90- to 120-min period when a steady state was present in breath (13)CO(2) and plasma glucose (13)C enrichment. Energy expenditure was higher in T than in UT subjects (58 vs. 47 kJ/min, respectively; P < 0.001) at the same relative intensity. This was completely accounted for by an increased fat oxidation (0.57 vs. 0.40 g/min; P < 0.01). At the same absolute intensity, fat oxidation contributed more to energy expenditure in the T compared with the UT group (44 vs. 33%, respectively; P < 0.01). The reduction in carbohydrate oxidation in the T group was explained by a diminished oxidation rate of muscle glycogen (indirectly assessed by using tracer methodology at 0.72 +/- 0.1 and 1.03 +/- 0.1 g/min, respectively; P < 0.01) and liver-derived glucose (0.15 +/- 0.03 and 0.22 +/- 0.02 g/min, respectively; P < 0.05). Exogenous glucose oxidation rates were similar during all trials (+/-0.70 g/min).  相似文献   

3.
The force-velocity relationship on a Monark ergometer and the vertical jump height have been studied in 152 subjects practicing different athletic activities (sprint and endurance running, cycling on track and/or road, soccer, rugby, tennis and hockey) at an average or an elite level. There was an approximately linear relationship between braking force and peak velocity for velocities between 100 and 200 rev.min-1. The highest indices of force P0, velocity V0 and maximal anaerobic power (Wmax) were observed in the power athletes. There was a significant relationship between vertical jump height and Wmax related to body mass.  相似文献   

4.
Six male and six female elite speed skaters were tested during two bicycle ergometer tests: a 30 s sprint test and a 2.5 min supra maximal test. During the 2.5 min test oxygen consumption was measured every 30 s. The males showed 30-31% higher mean power output values both during the sprint test (1103 versus 769 Watt) and during the 2.5 min test (570 versus 390 Watt). Maximal oxygen consumption was 31% higher for the males than for the females (5.10 versus 3.50 1.min-1). However, when expressed per kilogram lean body weight (LBM), power output and oxygen consumption was equal for both sexes. Differences between present and previous results are most likely due to methodological problems with the estimation of load during the supra maximal test. Subjects appear to experience difficulties in distributing their power output over the 2.5 min if they are tested for the first time. For experienced skaters and cyclists, fixed levels of 19 W.kgLBM-1 as initial load setting for the sprint test and 8 W.kg LBM-1 for the 2.5 min test are recommended.  相似文献   

5.
The effect of heat acclimatization on aerobic exercise tolerance in the heat and on subsequent sprint exercise performance was investigated. Before (UN) and after (ACC) 8 days of heat acclimatization, 10 male subjects performed a heat-exercise test (HET) consisting of 6 h of intermittent submaximal [50% of the maximal O2 uptake] exercise in the heat (39.7 degrees C dB, 31.0% relative humidity). A 45-s maximal cycle ride was performed before (sprint 1) and after (sprint 2) each HET. Mean muscle glycogen use during the HET was lower following acclimatization [ACC = 28.6 +/- 6.4 (SE) and UN = 57.4 +/- 5.1 mmol/kg; P less than 0.05]. No differences were noted between the UN and ACC trials with respect to blood glucose, lactate (LA), or respiratory exchange ratio. During the UN trial only, total work output during sprint 2 was reduced compared with sprint 1 (24.01 +/- 0.80 vs. 21.56 +/- 1.18 kJ; P less than 0.05). This reduction in sprint performance was associated with an attenuated fall in muscle pH following sprint 2 (6.86 vs. 6.67, P less than 0.05) and a reduced accumulation of LA in the blood. These data indicate that heat acclimatization produced a shift in fuel selection during submaximal exercise in the heat. The observed sparing of muscle glycogen may be associated with the enhanced ability to perform highly intense exercise following prolonged exertion in the heat.  相似文献   

6.
This study examined the torque-velocity and power-velocity relationships of quadriceps muscle function, stretch shortening cycle function, and leg-spring stiffness in sprint and endurance athletes. Isokinetic maximal knee extension torque was obtained from 7 sprinters and 7 endurance athletes using a Con-trex isokinetic dynamometer. Torque and power measures were corrected for lean-thigh cross-sectional area and lean-thigh volume, respectively. Stretch-shortening cycle function and muscle stiffness measurements were obtained while subjects performed single-legged squat, countermovement, and drop-rebound jumps on an inclined sledge and force-plate apparatus. The results indicated that sprinters generated, on average, 0.15 +/- 0.05 N.m.cm(-2) more torque across all velocities compared with endurance athletes. Significant differences were also found in the power-velocity relationships between the 2 groups. The sprinters performed significantly better than the endurance athletes on all jumps, but there were no differences in prestretch augmentation between the groups. The average vertical leg stiffness during drop jumps was significantly higher for sprinters (5.86 N.m(-1)) compared with endurance runners (3.38 N.m(-1)). The findings reinforce the need for power training to be carried out at fast contraction speeds but also show that SSC function remains important in endurance running.  相似文献   

7.
We tested whether preferred running event in track athletes would correlate with the initial rate of phosphocreatine (PCr) resynthesis following submaximal exercise. PCr recovery was measured in the calf muscles of 16 male track athletes and 7 male control subjects following 5 min of repeated plantar flexion against resistance. Pi, PCr, and pH were measured using phosphorus magnetic resonance spectroscopy (31P MRS) with an 8-cm surface coil in a 1.8-T magnet. During exercise, work levels were gradually increased to deplete PCr to 50-60% of the initial value. No drop in pH was seen in any of the subjects during this exercise. The areas of the PCr peaks following exercise were fit to monoexponential curves. Two or three tests were performed on each subject and the results averaged. Athletes were divided into three groups based on their primary event: sprinters running 400 m or less, middle-distance athletes running 400-1500 m, and long-distance athletes running farther than 1500 m. The maximal rates of PCr resynthesis (mmol.min-1.kg-1 muscle weight) were 64.8 +/- 8.6, for long-distance runners; 41.4 +/- 11, for middle-distance runners; 32.0 +/- 7.0, for sprinters; and 38.6 +/- 10, for controls (mean +/- SE). The faster PCr recovery rates seen in long-distance runners compared with sprinters indicate greater oxidative capacity, which is consistent with the known differences between athletes in these events.  相似文献   

8.
Contractile properties of the fast-twitch glycolytic (FG) portion of the iliofibularis muscle and sprint running performance were studied at approximately 5 degrees C intervals from 15-44 degrees C in the lizard Dipsosaurus dorsalis. Maximal running velocity (VR) and stride frequency (f) were both greatest when body temperature (Tb) was 40 degrees C, the field-active Tb in Dipsosaurus. At 40 degrees C VR was 4.3 +/- 0.2 m/s and f was 13.5 +/- 0.5 s-1. Between 25 and 40 degrees C, the thermal dependencies of VR and f were approximately constant (Q10's of 1.31 and 1.36 got VR and f, respectively). Below 25 degrees C performance declined more markedly with decreasing temperature. At 20 degrees C strides were qualitatively normal, but VR was only half of the value at 25 degrees C. At 15 degrees C the lizards were substantially incapacitated, and VR was 10% of the value at 20 degrees C. Stride length was approximately 0.33 m and changed very little with Tb from 20-44 degrees C. The time dependent contractile properties of FG muscle were affected more by temperature than was sprint performance. The maximal velocity of shortening at zero load (VO) was 18.7 0/s at 40 degrees C and had a Q10 of 1.7 from 25-40 degrees C. Maximal power output (Wmax) determined from the force-velocity curve was 464 W/kg at 40 degrees C. Below 40 degrees C max varied with temperature with a Q10 of 2-3. The shape of the force-velocity curve changed little with temperature (Wmax/POVO = 0.11). Between 25 and 40 degrees C a relatively temperature-independent process must modulate the effects of temperature on the contractile properties of the muscles that supply the power for burst locomotion. Storage and recovery of elastic energy appears to be a likely candidate for such a process. Below 25 degrees C, however, the contraction time is prolonged to such an extent that the f attainable is limited by the minimum time taken to contract and relax the muscles.  相似文献   

9.
The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.  相似文献   

10.
The effect of a progressively increasing work rate (15 W X min-1) up to exhaustion on the time course of O2 uptake (VO2), ventilation (VE) and heart rate (HR) has been studied in weight lifters (WL) in comparison to endurance cyclists (Cycl) and sedentary controls (Sed). VO2 and VE were measured as average value of 30-s intervals by a semiautomatic open circuit method. VO2max was 2.55 +/- 0.33; 4.29 +/- 0.53 and 2.86 +/- 0.19 l X min-1 in WL, Cycl and Sed respectively. With time and work rate, while VO2 and HR increased linearly, VE changed its slope at two levels. The 1st VE change occurred at a work load corresponding to a mean (+/- SD) VO2 of 1.50 +/- 0.26; 1.93 +/- 0.34; and 1.23 +/- 0.14 l X min-1 in WL, Cycl, and Sed respectively. VO2 values corresponding to the second VE change of slope were 2.18 +/- 0.32 in WL; 3.48 +/- 0.53 in Cycl and 2.17 +/- 0.28 l X min-1 in Sed. The first change of slope might be the consequence of the different readjustment of VO2 on-response and hence of early lactate in the different subjects. The second change seems to be comparable to the conventional anaerobic threshold and is achieved in all subjects when VE vs time slope is 7-10 l X min-1/min of exercise.  相似文献   

11.
The purpose of this study was to describe the pacing strategy of experienced cyclists in a 5-minute maximal exercise bout and to describe selected physiological responses associated with this effort. Six experienced and well-trained competitive cyclists (five males, one female) with a mean (+/-SD) age, height, and mass of 27.0 +/- 4.77 years, 174.7 +/- 8.57 cm, and 71.0 +/- 6.45 kg, performed a 5-minute maximal exercise bout in a laboratory on a racing cycle. Subjects were free to determine their work rate throughout. During exercise, data were collected for work rate, heart rate (HR), [latin capital V with dot above]O2, electromyography of the rectus femoris and vastus lateralis, oxygen saturation, and rating of perceived exertion. All six subjects selected a pacing strategy characterized by a surge in work rate in the first minute followed by a gradual decline until the last minute, when a sprint to the end occurred. Values for HR, respiratory exchange ratio, and blood lactate concentration (182.8 +/- 2.8 bpm, 1.08 +/- 0.07, and 15.5 +/- 2.1 mmol x L-1, respectively) indicated that [latin capital V with dot above]O2 (3.6 +/- 0.4 L x min-1) was close to or at maximum from minutes 2 to 5. Oxygen saturation dropped continuously across time, reaching <94% in the last minute, and rating of perceived exertion was 19.5 +/- 0.8. Electromyographic activity of the rectus femoris and vastus lateralis was not significantly related to work rate during the bout (p > 0.05). It is concluded that work rate or pace is uneven in an all-out, 5-minute exercise bout in experienced cyclists, yet the physiological responses are near maximal in minutes 2-5. Cyclists seem to pace themselves in a common pattern in short-term stochastic exercise bouts. The possible benefits of including some stochastic exercise in the training programs of athletes might be worthy of examination.  相似文献   

12.
The purpose of this study was to investigate the relationship between anaerobic threshold (Th(an)) and muscle fatigue threshold (EMGFT) as estimated from electromyographic (EMG) data taken from the quadriceps muscles (vastus lateralis) during exercise on a cycle ergometer. The subjects in this study were 20 female college students, including highly trained endurance athletes and untrained sedentary individuals, whose fitness levels derived from their maximal oxygen consumption ranged from 24.9 to 62.2 ml.kg-1.min-1. The rate of increase in integrated EMG (iEMG) activity as a function of time (iEMG slope) was calculated at each of four constant power outputs (350, 300, 250, 200 W), sufficiently high to bring about muscle fatigue. The iEMG slopes so obtained were plotted against the exercise intensities imposed, resulting in linear plots which were extrapolated to zero slope to give an intercept on the power axis which was in turn interpreted as the highest exercise intensity sustainable without electromyographic evidence of neuromuscular fatigue (EMGFT). The Th(an) was estimated from gas exchange parameters during an incremental exercise test on the same cycle ergometer. The mean results indicated that oxygen uptake (VO2) at Than was 1.39 l.min-1, SD 0.44 and VO2 at EMGFT was 1.33 l.min-1, SD 0.57. There was no significant difference between these mean values (P greater than 0.05) and there was a highly significant correlation between VO2 at Than and VO2 at EMGFT (r = 0.823, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (Vo(2 peak)), no study has examined the effect of SIT on "aerobic" exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1-2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at approximately 80% Vo(2 peak). Eight recreationally active subjects [age = 22 +/- 1 yr; Vo(2 peak) = 45 +/- 3 ml.kg(-1).min(-1) (mean +/- SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven "all-out" 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 +/- 1.0 vs. 4.0 +/- 0.7 mmol.kg protein(-1).h(-1)) and resting muscle glycogen content increased by 26% (614 +/- 39 vs. 489 +/- 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 +/- 11 vs. 26 +/- 5 min; P < 0.05), despite no change in Vo(2 peak). The coefficient of variation for the cycle test was 12.0%, and a control group (n = 8) showed no change in performance when tested approximately 2 wk apart without SIT. We conclude that short sprint interval training (approximately 15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.  相似文献   

14.
This study was carried out to compare blood lactate changes in isocapnic buffering phase in an incremental exercise test between sprinters and long distance runners, and to seek the possibility for predicting aerobic or anaerobic potential from blood lactate changes in isocapnic buffering phase. Gas exchange variables and blood lactate concentration ([lactate]) in six sprinters (SPR) and nine long distance runners (LDR) were measured during an incremental exercise test (30 W.min-1) up to subject's voluntary exhaustion on a cycle ergometer. Using a difference between [lactate] at lactate threshold (LT) and [lactate] at the onset of respiratory compensation phase (RCP) and the peak value of [lactate] obtained during a recovery period from the end of the exercise test, the relative increase in [lactate] during the isocapnic buffering phase ([lactate]ICBP) was assessed. The [lactate] at LT (mean +/- SD) was similar in both groups (1.36 +/- 0.27 for SPR vs. 1.24 +/- 0.24 mmol.l-1 for LDR), while the [lactate] at RCP and the peak value of [lactate] were found to be significantly higher in SPR than in LDR (3.61 +/- 0.33 vs. 2.36 +/- 0.45 mmol.l-1 for RCP, P < 0.001, 10.18 +/- 1.53 vs. 8.10 +/- 1.61 mmol.l-1 for peak, P < 0.05). The [lactate]ICBP showed a significantly higher value in SPR (22.5 +/- 5.9%, P < 0.05) compared to that in LDR (14.2 +/- 5.0%) as a result of a twofold greater increase of [lactate] from LT to RCP (2.25 +/- 0.49 for SPR vs. 1.12 +/- 0.39 mmol.l-1 for LDR). In addition, the [lactate]ICBP inversely correlated with oxygen uptake at LT (VO2LT, r = -0.582, P < 0.05) and maximal oxygen uptake (VO2max, r = -0.644, P < 0.01). The results indicate that the [lactate]ICBP is likely to give an index for the integrated metabolic, respiratory and buffering responses at the initial stage of metabolic acidosis derived from lactate accumulation.  相似文献   

15.
The aim of this study was to specify the effects of caffeine on maximal anaerobic power (Wmax). A group of 14 subjects ingested caffeine (250 mg) or placebo in random double-blind order. The Wmax was determined using a force-velocity exercise test. In addition, we measured blood lactate concentration for each load at the end of pedalling and after 5 min of recovery. We observed that caffeine increased Wmax [964 (SEM 65.77) W with caffeine vs 903.7 (SEM 52.62) W with placebo; P less than 0.02] and blood lactate concentration both at the end of pedalling [8.36 (SEM 0.95) mmol.l-1 with caffeine vs 7.17 (SEM 0.53) mmol.l-1 with placebo; P less than 0.01] and after 5 min of recovery [10.23 (SEM 0.97) mmol.l-1 with caffeine vs 8.35 (SEM 0.66) mmol.l-1 with placebo; P less than 0.04]. The quotient lactate concentration/power (mmol.l-1.W-1) also increased with caffeine at the end of pedalling [7.6.10(-3) (SEM 3.82.10(-5)) vs 6.85.10(-3) (SEM 3.01.10(-5)); P less than 0.01] and after 5 min of recovery [9.82.10(-3) (SEM 4.28.10(-5)) vs 8.84.10(-3) (SEM 3.58.10(-5)); P less than 0.02]. We concluded that caffeine increased both Wmax and blood lactate concentration.  相似文献   

16.
We examined the effects of weight loss induced by diet-orlistat (DO) and diet-orlistat combined with exercise (DOE) on maximal work rate production (Wmax) capacity in obese patients. Total of 24 obese patients were involved in this study. Twelve of them were subjected to DO therapy only and the remaining 12 patients participated in a regular aerobic exercise-training program in addition to DO therapy (DOE). Each patient performed two incremental ramp exercise tests up to exhaustion using an electromagnetically-braked cycle ergometer: one at the onset and one at the end of the 4th week. DOE therapy caused a significant decrease in total body weight: 101.5+/-17.4 kg (basal) vs 96.3+/-17.3 kg (4 wk) associated with a significant decrease in body fat mass: 45.0+/-10.5 kg (basal) vs 40.9+/-9.8 kg (4 wk). DO therapy also resulted in a significant decrease of total body weight 94.9+/-14.9 kg (basal) vs 91.6+/-13.5 kg (4 wk) associated with small but significant decreases in body fat mass: 37.7+/-5.6 kg (basal) to 36.0+/-6.2 kg (4 wk). Weight reduction achieved during DO therapy was not associated with increased Wmax capacity: 106+/-32 W (basal) vs 106+/-33 W (4 wk), while DOE therapy resulted in a markedly increased Wmax capacity: 109+/-39 W (basal) vs 138+/-30 W (4 wk). DO therapy combined with aerobic exercise training resulted in a significant reduction of fat mass tissue and markedly improved the aerobic fitness and Wmax capacities of obese patients. Considering this improvement within such a short period, physicians should consider applying an aerobic exercise-training program to sedentary obese patients for improving their physical fitness and thereby reduce the negative outcomes of obesity.  相似文献   

17.
Human muscle metabolism during sprint running   总被引:8,自引:0,他引:8  
Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.  相似文献   

18.
The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.  相似文献   

19.
The effects of growth and pubertal development on bio-energetic characteristics were studied in boys aged 6-15 years (n = 144; transverse study). Maximal oxygen consumption (VO2max, direct method), mechanical power at VO2max (PVO2max), maximal anaerobic power (Pmax; force-velocity test), mean power in 30-s sprint (P30s; Wingate test) were evaluated and the ratios between Pmax, P30s and PVO2max were calculated. Sexual maturation was determined using salivary testosterone as an objective indicator. Normalized for body mass VO2max remained constant from 6 to 15 years (49 ml.min-1.kg-1, SD 6), whilst Pmax and P30s increased from 6-8 to 14-15 years, from 6.2 W.kg-1, SD 1.1 to 10.8 W.kg-1, SD 1.4 and from 4.7 W.kg-1, SD 1.0 to 7.6 W.kg-1, SD 1.0, respectively, (P less than 0.001). The ratio Pmax:PVO2max was 1.7 SD 3.0 at 6-8 years and reached 2.8 SD 0.5 at 14-15 years and the ratio P30s:PVO2max changed similarly from 1.3 SD 0.3 to 1.9 SD 0.3. In contrast, the ratio Pmax:P30s remained unchanged (1.4 SD 0.2). Significant relationships (P less than 0.001) were observed between Pmax (W.kg-1), P30s (W.kg-1), blood lactate concentrations after the Wingate test, and age, height, mass and salivary testosterone concentration. This indicates that growth and maturation have together an important role in the development of anaerobic metabolism.  相似文献   

20.
The purpose of this study was to determine the effect of starting the force-velocity test with a heavy load on both maximal anaerobic power and blood lactate concentration. Nine male subjects aged 23.4 +/- 1.3 yr (mean +/- sem) participated in a first force-velocity test (FV1) which had an initial load of 1 kg (classical protocol). Then a week later in a second force-velocity test (FV2) which had an initial load corresponding to maximal power developed during FV1 (W1). The increase in load was of 1 kg for FV1 and FV2. Our results show that during FV2, compared to FV1: 1) maximal anaerobic power developed (W2) is superior to W1 (W1 = 1,165.2 +/- 70.4 W; W2 = 1,278.6 +/- 92.3 W; p less than 0.02); 2) blood lactate concentration after the first load is inferior (p less than 0.001); 3) blood lactate concentration is not significantly different at the peak of power. Thus, starting the force-velocity test with a heavy load allows an increase of maximal anaerobic power until a blood lactate concentration which may be compared to the one obtained during the classic force-velocity test. In conclusion, maximal anaerobic power measured during the force-velocity test seems to depend on protocol used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号