首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We have examined the effects of 3,5 3'-triiodo-L-thyronine (T3), dexamethasone, bromocriptine, thyrotropin releasing hormone (TRH) and estrogen on the levels of pituitary alpha and TSH-beta protein and mRNA levels in hypothyroid mice. After 3 days of treatment with T3 (0.5 micrograms/100 g body weight) serum TSH, alpha and TSH-beta levels were 77%, 79% and 44% of control, respectively. Pituitary alpha and TSH-beta mRNA content was estimated by dot blot hybridization of total RNA with 32P-labelled alpha and TSH-beta plasmid probes. There was no change in alpha mRNA after 3 days of T3 treatment but TSH-beta mRNA had decreased to 60% of control. With T3 at 2 micrograms/100 g body weight for 3 days, TSH protein was 27% of control and TSH-beta was undetectable, but there was no change in alpha. TSH-beta mRNA was decreased to 40% of control at 1 day and was barely detectable at 3 days, whereas alpha mRNA was 70% of control at 1 day and 42% at 3 days. Dexamethasone and bromocriptine caused no consistent change in pituitary levels of alpha and TSH-beta mRNA. Treatment with TRH caused small increases in serum TSH and in both alpha and TSH-beta mRNA levels. Estrogen treatment increased serum TSH and subunit levels and TSH-beta mRNA, but not alpha. We conclude that thyroid hormones decrease alpha and beta subunit mRNA levels discordantly in both the hypothyroid pituitary and in thyrotropic tumors and that the suppressive effect of thyroid hormone is the major regulator of TSH.  相似文献   

2.
In two patients with congenital isolated thyrotropin (TSH) deficiency, serum TSH determined by a sensitive immunoradiometric assay (IRMA) was consistently undetectable. The basal levels of serum free TSH-alpha subunit (TSH-alpha) determined by a specific radioimmunoassay (RIA) were elevated in the hypothyroid state, and decreased to the undectable level during displacement therapy with thyroid hormone. The serum free TSH-alpha significantly increased following intravenous administration of thyrotropin releasing hormone (TRH). Serum free TSH-beta subunit (TSH-beta) was undectable. These findings suggest that TSH deficiency in this disease is not due to absence of thyrotroph in the pituitary gland or deficiency of TSH-alpha, but to abnormalities of the TSH-beta gene.  相似文献   

3.
We have studied the regulation of the biosynthesis of thyrotropin (TSH) and its alpha and beta subunits by thyroid hormone in thyrotropic tumors carried in hypothyroid mice. Treatment with 3,5,3'-triiodo-L-thyronine (T3) (20 micrograms/100 g, body weight) daily for 4 or 10 days reduced serum TSH to 3 and 0.3% of control, respectively. Serum levels of free alpha subunit were reduced to 60 and 11% of control at 4 days and 10 days, respectively, and serum free TSH-beta was undetectable at both time points. There was no significant decrease in tumor TSH content after 4 days of treatment and, after 10 days, TSH content was reduced to 15% of control levels. There was no significant effect of T3 on tumor alpha subunit levels at either 4 or 10 days. In contrast, tumor TSH-beta content was markedly reduced after 4 days and 10 days of T3 treatment, to 29 and 10% of control levels, respectively. Translation of tumor poly(A) mRNA in a rabbit reticulocyte lysate system showed that thyroid hormone decreased translatable TSH-beta mRNA to undetectable levels at both 4 and 10 days, whereas translatable alpha mRNA was reduced strikingly only at 10 days in one of two tumors. RNA blot hybridization with 32P-labeled plasmid probes containing alpha or TSH-beta cDNAs showed that TSH-beta mRNA was reduced to less than 10% of control after both 4 and 10 days of T3 treatment, whereas, again, alpha mRNA was only reduced in one of two tumors at 10 days. Our data thus show that thyroid hormone affects alpha and TSH-beta mRNA and protein levels discordantly and suggest that regulation of TSH biosynthesis may occur predominantly at the level of TSH-beta mRNA.  相似文献   

4.
5.
Cellular levels of mRNA encoding pro TRH in the rostral paraventricular nucleus are reduced by thyroid hormones. To determine whether this regulatory effect of thyroid hormones requires a functional pituitary gland or, specifically, TSH, we examined the effect of T3 on proTRH mRNA in hypophysectomized, thyro-parathyroidectomized male rats with or without bovine TSH replacement. Hypophysectomy plus thyro-parathyroidectomy reduced serum T4 and TSH to undetectable levels in all animals and elevated TRH mRNA in the paraventricular nucleus over that of sham-operated animals. Eleven consecutive daily injections of T3 significantly reduced TRH mRNA levels in both sham controls and thyro-parathyroidectomized rats. However, 11 daily injections of bovine TSH (1 U/day) failed to alter the effect of T3 on TRH mRNA levels. These results demonstrate that the regulatory influence of thyroid hormones on the biosynthesis of TRH within the thyrotropic center of the brain is independent of the pituitary gland and of TSH.  相似文献   

6.
Thyrotropin (TSH), a glycoprotein hormone of the pituitary consisting of two subunits (alpha and beta), regulates thyroxine (T4) production by the thyroid gland. T4, in turn, regulates TSH biosynthesis and release. We have studied the regulation of the messenger RNA encoding the alpha subunit of TSH by T4 in pituitaries and in a transplantable thyrotropic tumor in mice. Hypothyroid male LAF1 mice bearing the TtT 97 thyrotropic tumor were injected daily with T4 for either 0, 1, 5, 12, or 33 days. Levels of TSH and its unassociated alpha (free alpha) and TSH-beta subunits in the plasma of these animals fell to less than 5% of control values after 33 days. Concentrations of TSH and TSH-beta in both tumor and pituitary also fell to low levels (less than 2% of control), while intracellular concentrations of free alpha subunit remained unchanged. Cellular levels of the mRNA encoding the precursor of the alpha subunit or pre-alpha (alpha mRNA) were measured by cell-free translation followed by electrophoretic analysis of immunoprecipitates of pre-alpha subunit and by nucleic acid hybridization to a radiolabeled cDNA probe specific for the alpha mRNA. In the pituitary, translatable and hybridizable alpha mRNA was decreased slightly after 1 day of T4 and decreased 40-50% after 5 and 12 days. In thyrotropic tumors, both translatable and total alpha mRNA showed a 60% decrease by 1 day and a maximum 85% decrease after 5, 12, and 33 days of T4. Therefore, T4 acts rapidly in vivo to decrease steady state alpha mRNA levels in the thyrotrope, and this decrease is maintained for the duration of treatment with thyroid hormone. This regulatory process is reflected in the sharp decreases in levels of TSH and free alpha subunit in plasma and in lower concentrations of the intact TSH in tissue. In contrast, the maintenance of high tissue concentrations of free alpha subunit after T4 treatment may be a reflection of alterations in a post-translational process specific for the free alpha subunit, as opposed to that of the intact TSH.  相似文献   

7.
Thyroid hormones, T4 and T3, regulate their own production by feedback inhibition of TSH and TRH synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) that interact with the promoters of the genes for the TSH subunit and TRH. All TR isoforms are believed to be involved in the regulation of this endocrine axis, as evidenced by the massive dysregulation of TSH production in mice lacking all TR isoforms. However, the relative contributions of TR isoforms in the pituitary vs. the hypothalamus remain to be completely elucidated. Thus, to determine the relative contribution of pituitary expression of TR-alpha in the regulation of the hypothalamic-pituitary-thyroid axis, we selectively impaired TR-alpha function in TR-beta null mice (TR-beta-/-) by pituitary restricted expression of a dominant negative TR-beta transgene harboring a delta337T mutation. These animals exhibited 10-fold and 32-fold increase in T4 and TSH concentrations, respectively. Moreover, the negative regulation of TSH by exogenous T3 was completely absent and a paradoxical increase in TSH concentrations and TSH-beta mRNA was observed. In contrast, prepro-TRH expression levels in T3-treated TR-beta-/- were similar to levels observed in the delta337/TR-beta-/- mice, and ligand-independent activation of TSH in hypothyroid mice was equivalently impaired. Thus, isolated TR-beta deficiency in TRH paraventricular hypothalamic nucleus neurons and impaired function of all TRs in the pituitary recapitulate the baseline hormonal disturbances that characterize mice with complete absence of all TRs.  相似文献   

8.
Thyroidectomized rats were used to study the effects of a single injection of T3 on pituitary mRNA synthesis and hormone secretion. T3 was injected ip at doses of 0, 0.2, 1, or 5 micrograms/100 g body weight, and and animals were killed 24 h later. T3 caused a significant decrease in serum TSH, but caused no significant change in either serum GH or PRL. Pituitary mRNA was quantified by slot blot hybridization with cDNA probes specific for alpha-TSH, beta-TSH, PRL, and GH. We found that both the alpha and beta mRNA subunits decreased, that PRL mRNA remained relatively unchanged, and that GH mRNA increased with increasing T3 dose. The data show that a single dose of T3 can profoundly influence mRNA levels in the anterior pituitary; the lowest dose of T3 caused maximum inhibition of alpha-TSH mRNA while beta-TSH mRNA declined further in a dose-dependent manner.  相似文献   

9.
10.
The response of the hypothalamic pituitary axis to chronic iodine deficiency was compared in male and female Sprague-Dawley rats. The animals were kept on a low iodine diet for 12 weeks. Blood samples as well as thyroid and pituitary weights were obtained every two weeks. Baseline values of thyroid weight and serum thyroxine (T4) were similar in both sexes. However, females had lower serum TSH and higher serum triiodothyronine (T3), pituitary weight and pituitary TSH content. After initiation of the low iodine diet, both sexes showed similar decreases in serum T4 and similar increases of serum TSH and thyroid weight. Serum T3, pituitary weight and TSH content remained higher in females throughout the study. Pituitary TSH was directly correlated with serum TSH in both sexes. When adjusted for pituitary TSH and analyzed by a stepwise regression analysis, serum TSH was lower in females suggesting a difference in TSH secretion between males and females. Our studies demonstrate significant sex differences in the regulation of TSH secretion and maintenance of serum T3 level in response to a chronic stimulus.  相似文献   

11.
TSH, LH and FSH, the three pituitary glycoprotein hormones, are each composed of a common alpha-subunit and a hormone specific beta-subunit. Testosterone is known to regulate all three intact hormones differently in the rodent. However, there is only one gene encoding the common alpha-subunit. In order to elucidate the effects of testosterone on TSH subunit synthesis and its regulation of the common alpha-subunit, two in vivo models were studied: castrate rat pituitary was used as a gonadotropin-enriched tissue; and mouse thyrotropic tumor was used as a thyrotropin-enriched tissue. Male castrate rats were treated with testosterone propionate, 500 micrograms/100 g BW, sc, for 11 days. Testosterone increased plasma TSH to 131% of control values (P less than 0.02), while plasma LH fell to undetectable levels, and plasma alpha-subunit fell to 14% of control values (P less than 0.001). Testosterone increased TSH-beta mRNA to 237% of control values (P less than 0.02), while alpha-subunit mRNA fell to 20% of control values (P less than 0.001). Hypothyroid mice bearing thyrotropic tumors were treated with testosterone propionate, 150 micrograms/100 g BW, sc, for 11 days. In this model plasma TSH-beta and alpha-subunit concentrations are 1000-fold higher than in non-tumor bearing animals, and the contribution of pituitary gonadotropes to plasma subunit concentrations is negligible. "Total" TSH-beta and alpha-subunit concentrations were estimated as one-half of intact TSH plus the respective free subunit concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We studied the effect of thyroid status on thyrotropin-releasing hormone receptor (TRH-R) mRNA levels both in vivo and in vitro (GH3 cells) using a cloned rat TRH-R cDNA by RT-PCR. Experimental hypothyroid rats were produced by total thyroidectomy and were then killed 7 days after the operation. TRH receptor binding in the anterior pituitary and serum TSH level were elevated approximately 2-fold and 8-fold, respectively, in 7 day thyroidectomized rats. TRH-R mRNA levels in hypothyroid rats were also increased significantly compared with those of normal rats. In GH3 cells, however, no significant change of TRH-R mRNA level was observed between cultures treated with triiodothyronine (T3, 10(-9) and 10(-7) M) and the untreated group. The present data indicate that 1) the in vivo effects of thyroid status on TRH-R mRNA levels differ from the in vitro one, and that 2) the down regulation of TRH-R binding by thyroid hormone in GH3 cells may be mediated by translational or post-translational mechanisms.  相似文献   

13.
Exposure of the thyroid to radiation during radiotherapy of the head and neck is often unavoidable. The present study aimed to investigate the protective effect of α-lipoic acid (ALA) on radiation-induced thyroid injury in rats. Rats were randomly assigned to four groups: healthy controls (CTL), irradiated (RT), received ALA before irradiation (ALA + RT), and received ALA only (ALA, 100 mg/kg, i.p.). ALA was treated at 24 h and 30 minutes prior to irradiation. The neck area including the thyroid gland was evenly irradiated with 2 Gy per minute (total dose of 18 Gy) using a photon 6-MV linear accelerator. Greater numbers of abnormal and unusually small follicles in the irradiated thyroid tissues were observed compared to the controls and the ALA group on days 4 and 7 after irradiation. However, all pathologies were decreased by ALA pretreatment. The quantity of small follicles in the irradiated rats was greater on day 7 than day 4 after irradiation. However, in the ALA-treated irradiated rats, the numbers of small and medium follicles were significantly decreased to a similar degree as in the control and ALA-only groups. The PAS-positive density of the colloid in RT group was decreased significantly compared with all other groups and reversed by ALA pretreatment. The high activity index in the irradiated rats was lowered by ALA treatment. TGF-ß1 immunoreactivity was enhanced in irradiated rats and was more severe on the day 7 after radiation exposure than on day 4. Expression of TGF-ß1 was reduced in the thyroid that had undergone ALA pretreatment. Levels of serum pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) did not differ significantly between the all groups. This study provides that pretreatment with ALA decreased the severity of radiation-induced thyroid injury by reducing inflammation and fibrotic infiltration and lowering the activity index. Thus, ALA could be used to ameliorate radiation-induced thyroid injury.  相似文献   

14.
The effect of acute administration of L-DOPA on TSH and TRH levels in serum was studied in primary or pituitary hypothyroidism. TRH levels in serum fell and then returned to initial levels after L-DOPA administration in primary or pituitary hypothyroidism. TSH levels in serum fell and then returned to initial levels after L-DOPA administration in primary hypothyroidism. T4 and T3 levels in serum did not change after L-DOPA administration in primary or pituitary hypothyroidism. These data suggested that L-DOPA might act directly to hypothalamus.  相似文献   

15.
We have studied the effect of two inhibitors of prostaglandin synthesis on the basal and TRH-stimulated plasma TSH levels in the rat. Animals were injected sc daily with indomethacin 3 mg/0.5 ml) or aspirin (16--30 mg/0.5 ml) for 3 days. The plasma T4 and T3 were consistently lower in the indomethacin or aspirin groups than in the controls, while the basal TSH levels did not change. Indomethacin treatment significantly potentiated the TSH response to synthetic TRH (20 ng. iv) in intact and thyroidectomized rats. The pituitary TSH content was markedly increased by indomethacin, while hypothalamic TRH content did not change. In contrast, aspirin inhibited the TSH response to TRH in intact rats, when pituitary TSH content decreased significantly. No potentiation by aspirin of TRH-stimulated TSH response in the thyroidectomized rats was observed. The increased sensitivity of plasma TSH response to exogenous TRH in the indomethacin group is presumably due to higher pituitary TSH content than in the controls. The action of indomethacin appears to be mediated, at least in part, at the pituitary level. In addition, there is a dissociation between the action of indomethacin and the action of aspirin in the TSH response to TRH.  相似文献   

16.
Mentha extract (ME; 1 g/kg body wt) given orally for three consecutive days prior to whole body irradiation (8 Gy) showed modulation of activity of serum phosphatases in albino mice. Values of acid phosphatase activities were significantly higher in untreated irradiated group throughout the experiment. Irradiated animals pretreated with ME showed significant decline in acid phosphatase activity as compared to untreated irradiated animals at all autopsy intervals and attained normalcy at day 5. A marked decrease in serum alkaline phosphatase activity was recorded in both irradiated groups. However, in ME pretreated irradiated group, values of alkaline phosphatase activity remained significantly higher than untreated irradiated animals at all intervals and attained normalcy from day 5 onwards.  相似文献   

17.
Thyroxine (T4) is required in species possessing brown adipose tissue (BAT) for the maintenance of cold tolerance and adaptation. In humans, who possess negligible quantities of BAT, the importance of T4 has not been demonstrated. We studied the effects of decreased serum T4 and thyrotropin (TSH) on human cold habituation after repeated cold air exposures. Eight men (T3+) received a single daily dose of triiodothyronine (T3; 30 micrograms/day), and another eight men (T3-) received a placebo. All 16 normal thyroid men underwent a standardized cold air test (SCAT) under basal conditions in January and again in March after eighty 30-min 4.4 degrees C air exposures (10/wk). Measurements of basal metabolic rate (BMR), O2 consumption (VO2), mean arterial pressure (MAP), plasma norepinephrine (NE), serum TSH, free and total T4, and free and total T3 were repeated before and after 8 wk of exposure. TSH, free T4, and total T4 were 50% lower for T3+ than for T3- subjects. Total and free T3 were not different between groups. BMR was unchanged after habituation, whereas the cold-stimulated VO2, MAP, and NE were significantly reduced for all subjects in March. The relationship between VO2 and NE (r2 = 0.44, P less than 0.001) during the initial SCAT was unchanged with habituation. We suggest that human cold habituation is independent of major changes in circulating T4 and TSH.  相似文献   

18.
19.
20.
Neuromedin B (NB), a bombesin-like peptide, highly concentrated in rat pituitary gland, has been shown to act as an autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here it is shown that a single injection of thyrotropin-releasing hormone (TRH, 1.5 microg/animal, ip), the most important stimulator of thyrotropin secretion, induced approximately 35%-45% decrease in pituitary NB content in rats, as well as an important decrease in NB mRNA at 15 and 30 min (P < 0.05). Acute cold exposure, which induced higher serum TSH with a peak at 30 min, was associated with progressive decrease in pituitary NB, starting at 15 min although only reaching statistical significance after 2 hr (P < 0.05). Although not involved in the early peak, the decrease in NB may be contributing to maintenance of higher serum TSH in cold-exposed animals compared with those at room temperature. Fed rats, 2 hr after being subcutaneously injected with mouse recombinant leptin (8 microg /100 g body wt), showed a x2 increase in serum TSH and 38% reduction in pituitary NB (P < 0.05). In conclusion, TRH and leptin rapidly decreased pituitary NB and it is first proposed that the reduction of the inhibitory tonus of NB on TSH release will ultimately contribute to the amplification of TSH secretion elicited by TSH secretagogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号