首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence anisotropy kinetics were employed to quantify the nanosecond mobility of tryptophan residues in different conformational states (native, molten globule, unfolded) of apomyoglobins. Of particular interest is the similarity between the fluorescence anisotropy decays of tryptophans in the native and molten globule states. We find that, in these compact states, tryptophan residues rotate rapidly within a cone of semiangle 22-25 degrees and a correlation time of 0.5 ns, in addition to rotating together with the whole protein with a correlation time of 7-11 ns. The similar nanosecond dynamics of tryptophan residues in both states suggests that the conformation changes that distinguish the molten globule and native states of apomyoglobins originate from either subtle, slow rearrangements or fast changes distant from these tryptophans.  相似文献   

2.
We have carried out a picosecond fluorescence study of holo- and apoazurins of Pseudomonas aeruginosa (azurin Pae), Alcaligenes faecilis (azurin Afe), and Alcaligenes denitrificans (azurin Ade). Azurin Pae contains a single, buried tryptophyl residue; azurin Afe, a single surface tryptophyl residue; and azurin Ade, tryptophyl residues in both environments. From anisotropy measurements we conclude that the interiors of azurins Pae and Ade are not mobile enough to enable motion of the indole ring on a nanosecond time scale. The exposed tryptophans in azurins Afe and Ade show considerable mobility on a few hundred picosecond time scale. The quenching of tryptophan fluorescence observed in the holoproteins is interpreted in terms of electron transfer from excited-state tryptophan to Cu(II). The observed rates are near the maximum predicted by Marcus theory for the separation of donor and acceptor. The involvement of protein matrix and donor mobility for electron transfer is discussed. The two single-tryptophan-containing proteins enable the more complex fluorescence behavior of the two tryptophans of azurin Ade to be understood. The single-exponential fluorescence decay observed for azurin Pae and the nonexponential fluorescence decay observed for azurin Afe are discussed in terms of current models for tryptophan photophysics.  相似文献   

3.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.  相似文献   

4.
Experiments were done to test the thesis that acrylamide and similar small molecules can penetrate into proteins on a nanosecond time scale. The approach taken was to measure the pattern of fluorescence quenching exhibited by quenching molecules differing in molecular character (size, polarity, charge) when these are directed against protein tryptophans that cover the whole range of tryptophan accessibility. If quenching involves protein penetration and internal quencher migration, one expects that larger quenchers and more polar quenchers should display lesser quenching. In fact, no significant dependence on quencher character was found. For proteins that display measurable quenching, the disparate quenchers studied display very similar quenching rate constants when directed against any particular protein tryptophan. For several proteins having tryptophans known to be buried, no quenching occurs. These results are not consistent with the view that the kinds of small molecules studied can quite generally penetrate into and diffuse about within proteins at near-diffusion-limited rates. Rather the results suggest that when quenching is observed, the pathway involves encounters with tryptophans that are partially exposed at the protein surface. Available crystallographic results support this conclusion.  相似文献   

5.
The intrinsic luminescence of different forms of the alfalfa mosaic virus (AMV) strain 425 coat protein has been studied, both statically and time resolved. It was found that the emission of the protein (Mr 24,250), which contains two tryptophans at positions 54 and 190 and four tyrosines, is completely dominated by tryptophan fluorescence. The high fluorescence quantum yield indicates that both tryptophans are emitting. Surprisingly, the fluorescence decay is found to be strictly exponential, with a lifetime of 5.1 nsec. Similar results were obtained for various other forms of the protein, i.e. the 30-S polymer, the mildly trypsinized forms of the protein lacking the N-terminal part and the protein assembled into viral particles. Virus particles and proteins of stains S and VRU gave similar results, as well as the VRU protein polymerised into tubular structures. The fluorescence decay is also monoexponential in the presence of various concentrations of the quenching molecules acrylamide and potassium iodide. Stern-Volmer plots were linear and yield for the coat protein dimer with acrylamide a quenching constant of 4.5* 10(8) M-1 sec-1. This indicates that the tryptophans are moderately accessible for acrylamide. For the 30-S polymer a somewhat smaller value was found, whereas in the viral Top a particles the accessibility of the tryptophans is still further reduced. From the decay of the polarisation anisotropy of the fluorescence of the coat protein dimer the rotational correlation time was obtained as 35 nsec. Since this roughly equals the expected rotational correlation time of the dimer as a whole, it suggests that the tryptophans are contained rigidly in the dimer. The results show that in the excited state of the protein the two tryptophans are strongly coupled and suggest that the trp-trp distance is smaller than 10 A. Because the coat protein occurs as a dimer, the coupling can be inter- or intramolecular. The implications for the viral structure are discussed.  相似文献   

6.
The photolysis intermediates of an artificial bovine rhodopsin pigment, cis-5,6-dihydro-isorhodopsin (cis-5,6,-diH-ISORHO, lambda max 461 nm), which contains a cis-5,6-dihydro-9-cis-retinal chromophore, are investigated by room temperature, nanosecond laser photolysis, and low temperature irradiation studies. The observations are discussed both in terms of low temperature experiments of Yoshizawa and co-workers on trans-5,6-diH-ISORHO (Yoshizawa, T., Y. Shichida, and S. Matuoka. 1984. Vision Res. 24: 1455-1463), and in relation to the photolysis intermediates of native bovine rhodopsin (RHO). It is suggested that in 5,6-diH-ISORHO, a primary bathorhodopsin intermediate analogous to the bathorhodopsin intermediate (BATHO) of the native pigment, rapidly converts to a blue-shifted intermediate (BSI, lambda max 430 nm) which is not observed after photolysis of native rhodopsin. The analogs from lumirhodopsin (LUMI) to meta-II rhodopsin (META-II) are generated subsequent to BSI, similar to their generation from BATHO in the native pigment. It is proposed that the retinal chromophore in the bathorhodopsin stage of 5,6-diH-ISORHO is relieved of strain induced by the primary cis to trans isomerization by undergoing a geometrical rearrangement of the retinal. Such a rearrangement, which leads to BSI, would not take place so rapidly in the native pigment due to ring-protein interactions. In the native pigment, the strain in BATHO would be relieved only on a longer time scale, via a process with a rate determined by protein relaxation.  相似文献   

7.
Oxidation with N-bromosuccinimide detects a total of about ten tryptophan residues in detergent-solubilized bovine rhodopsin. One of these tryptophans is more reactive in bleached than in unbleached rhodopsin, suggesting its involvement in the chromophore binding site. Oxidation of this residue is accompanied by loss of the 500nm. absorbance in unbleached rhodopsin. Similar experiments with bacteriorhodopsin are inconclusive.  相似文献   

8.
Abstract

The intrinsic luminescence of different forms of the alfalfa mosaic virus (AMV) strain 425 coat protein has been studied, both statically and time resolved. It was found that the emission of the protein (Mr24,250), which contains two tryptophans at positions 54 and 190 and four tyrosines, is completely dominated by tryptophan fluorescence. The high fluorescence quantum yield indicates that both tryptophans are emitting. Surprisingly, the fluorescence decay is found to be strictly exponential, with a lifetime of 5.1 nsec. Similar results were obtained for various other forms of the protein, i.e. the 30-S polymer, the mildly trypsinised forms of the protein lacking the N-terminal part and the protein assembled into viral particles. Virus particles and proteins of stains S and VRU gave similar results, as well as the VRU protein polymerised into tubular structures. The fluorescence decay is also monoexponential in the presence of various concentrations of the quenching molecules acrylamide and potassium iodide. Stern-Volmer plots were linear and yield for the coat protein dimer with acrylamide a quenching constant of 4.5 * 108 M?1sec?1. This indicates that the tryptophans are moderately accessible for acrylamide. For the 30-S polymer a somewhat smaller value was found, whereas in the viral Top a particles the accessibility of the tryptophans is still further reduced. From the decay of the polarisation anisotropy of the fluorescence of the coat protein dimer the rotational correlation time was obtained as 35 nsec. Since this roughly equals the expected rotational correlation time of the dimer as a whole, it suggests that the tryptophans are contained rigidly in the dimer.

The results show that in the excited state of the protein the two tryptophans are strongly coupled and suggest that the trp-trp distance is smaller than 10 A. Because the coat protein occurs as a dimer, the coupling can be inter- or intramolecular. The implications for the viral structure are discussed.  相似文献   

9.
Kinetically stable homodimeric serine protease milin reveals high conformational stability against temperature, pH and chaotrope [urea, guanidine hydrochloride (GuHCl) and guanidine isothiocynate (GuSCN)] denaturation as probed by circular dichroism, fluorescence, differential scanning calorimetry and activity measurements. GuSCN induces complete unfolding in milin, whereas temperature, urea and GuHCl induce only partial unfolding even at low pH, through several intermediates with distinct characteristics. Some of these intermediates are partially active (viz. in urea and 2 M GuHCl at pH 7.0), and some exhibited strong ANS binding as well. All three tryptophans in the protein seem to be buried in a rigid, compact core as evident from intrinsic fluorescence measurements coupled to equilibrium unfolding experiments. The protein unfolds as a dimer, where the unfolding event precedes dimer dissociation as confirmed by hydrodynamic studies. The solution studies performed here along with previous biochemical characterization indicate that the protein has α-helix and β-sheet rich regions or structural domains that unfold independently, and the monomer association is isologous. The complex unfolding pathway of milin and the intermediates has been characterized. The physical, physiological and probable therapeutic importance of the results has been discussed.  相似文献   

10.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.A part of this work was performed while one of the authors (T.K.) was a Visiting Investigator of Japan Society for the Promotion of Science at Kyoto University from April, 1977 to March, 1978  相似文献   

11.
Cattle rhodopsin can be highly oriented by shearing a wet paste of digitonin micelles of this visual pigment between two quartz slides. This orients the rhodopsin micelles so that their chromophores lie mainly parallel to the direction of shear. In such preparations the orientation of rhodopsin and intermediates of its bleaching by light have been measured with plane-polarized light from -195°C to room temperature. The chromophore maintains essentially the same orientation as in rhodopsin in all the intermediates of bleaching: bathorhodopsin (prelumirhodopsin), lumirhodopsin, and metarhodopsins I and II. When, however, the retinaldehyde chromophore is hydrolyzed from opsin in the presence of hydroxylamine, the retinaldehyde oxime that results rotates so as to lie mainly across the direction of shear. That is, the retinal oxime, though free, orients itself upon the oriented matrix of the opsin-digitonin micelles. These experiments show the rhodopsin-digitonin micelle to be markedly asymmetric, with the chromophore lying parallel to its long axis. The asymmetry could originate in the formation of the micelle, in rhodopsin itself, or by its linear polymerization under the conditions of the experiment. If rhodopsin itself is markedly asymmetric, for which there is some evidence, then, since in the rod outer segments its chromophores lie parallel to the disk membranes, the molecules themselves must lie with their long axes parallel to the membranes.  相似文献   

12.
The relevance of partially ordered states of proteins (such as the molten globule state) in cellular processes is beginning to be understood. Bovine α-lactalbumin (BLA) assumes the molten globule state at acidic pH. We monitored the organization and dynamics of the functionally important tryptophan residues of BLA in native and molten globule states utilizing the wavelength-selective fluorescence approach and fluorescence quenching. Quenching of BLA tryptophan fluorescence using quenchers of varying polarity (acrylamide and trichloroethanol) reveals varying degrees of accessibility of tryptophan residues, characteristic of native and molten globule states. We observed red edge excitation shift (REES) of 6 nm for the tryptophans in native BLA. Interestingly, we show here that BLA tryptophans exhibit REES (3 nm) in the molten globule state. These results constitute one of the early reports of REES in the molten globule state of proteins. Taken together, our results indicate that tryptophan residues in BLA in native as well as molten globule states experience motionally restricted environment and that the regions surrounding at least some of the BLA tryptophans offer considerable restriction to the reorientational motion of the water dipoles around the excited-state tryptophans. These results are supported by wavelength-dependent changes in fluorescence anisotropy and lifetime for BLA tryptophans. These results could provide vital insight into the role of tryptophans in the function of BLA in its molten globule state in particular, and other partially ordered proteins in general.  相似文献   

13.
Mielke T  Alexiev U  Gläsel M  Otto H  Heyn MP 《Biochemistry》2002,41(25):7875-7884
Bovine rhodopsin was specifically labeled on the cytoplasmic surface at cysteine 140 (the first residue of the loop connecting helices III and IV) or at cysteine 316 (in the loop connecting helix VII and the palmitoylation sites) with the fluorescent labels fluorescein and Texas Red. These loops are involved in activation and signal transduction. The time-resolved fluorescence depolarization was measured in the dark state and in the M(II) state, with labeled samples consisting of rhodopsin-octylglucoside micelles or rod outer segment (ROS) membranes. In this way the diffusional dynamics of the flexible loops of rhodopsin were measured for the first time directly on the nanosecond time scale. Control experiments showed that the large number of weak excitation pulses required in these single photon counting experiments leads to <5% bleaching of the sample. Rhodopsin was trapped in the activated M(II) state for the duration of the fluorescence experiments ( approximately 20 min) after illumination at pH 6 and 5 degrees C. For both types of samples and at both labeled positions the dynamics of the label and loop motion as monitored by the time constants of the depolarization were not significantly different in the two states of the receptor. The end-anisotropy increased, however, from 0.09 in the dark to 0.16 in the M(II) state for ROS samples labeled at C140. The corresponding numbers for the C316 position are 0.06 and 0.12. Light-induced activation in M(II) is thus associated with a large increase in the loop steric hindrance due to a changed loop domain structure on the cytoplasmic surface. These results are supported by fluorescence quenching experiments with I(-), which indicate a significant decrease in the collisional quenching constant k(q) and in accessibility in the M(II) state at both positions. The rotational correlation time of the rhodopsin micelles increased from 48 ns in the dark state to 60 ns in M(II). This increase is caused by a change in volume and/or shape and is consistent with a structural change. These results demonstrate that time-resolved fluorescence depolarization is a powerful tool to study the changes in conformation and dynamics of the cytoplasmic loops that accompany the activation of rhodopsin and other G-protein coupled receptors.  相似文献   

14.
Various classes of tryptophan residues in the Ca2(+)-ATPase of sarcoplasmic reticulum membranes have been distinguished on the basis of their sensitivities to certain fluorescence quenchers: the brominated phospholipid 1,2-bis(9,10-dibromostearoyl)-sn-glycero(3)phosphocholine, the calcium ionophore calcimycin (A23187) and its brominated analog (4-bromo-A23187), and the nucleotide analog 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate. We show that tryptophans located at the protein-lipid interface are the main contributors to the well-known fluorescence intensity change occurring in parallel with the conformational rearrangement induced by addition of calcium to the ATPase or its removal; Trp-794 on the ATPase chain may be one of these tryptophans. We also show that tryptophans more deeply embedded in the transmembrane protein structure contribute to the fluorescence change observed upon phosphorylation from inorganic phosphate of the calcium-free ATPase. This phosphorylation step involves opposite changes in the fluorescence quantum yield of tryptophans located in the membrane and in the cytoplasmic regions of the ATPase. This result is in agreement with models in which phosphorylation from inorganic phosphate not only changes the ATPase conformation locally around the catalytic center, but also reorganizes the membrane portion of the ATPase by long-range action, allowing, for instance, the calcium sites to become accessible from the luminal medium.  相似文献   

15.
The conformation of the AB-loop and EF-loop of bacteriorhodopsin and of the fourth cytoplasmic loop (helix VIII) of bovine rhodopsin were assessed by a combination of time-resolved fluorescence depolarization and site-directed fluorescence labeling. The fluorescence anisotropy decays were measured employing a tunable Ti:sapphire laser/microchannel plate based single-photon counting apparatus with picosecond time resolution. This method allows measurement of the diffusional dynamics of the loops directly on a nanosecond time-scale. We implemented the method to study model peptides and two-helix systems representing sequences of bacteriorhodopsin. Thus, we systematically analyzed the anisotropic behavior of four different fluorescent dyes covalently bound to a single cysteine residue on the protein surface and assigned the anisotropy decay components to the modes of motion of the protein and its segments. We have identified two mechanisms of loop conformational changes in the functionally intact proteins bacteriorhodopsin and bovine rhodopsin. First, we found a surface potential-dependent transition between two conformational states of the EF-loop of bacteriorhodopsin, detected with the fluorescent dye bound to position 160. A transition between the two conformational states at 150mM KCl and 20 degrees C requires a surface potential change that corresponds to Deltasigma approximately -1.0e(-)/bacteriorhodopsin molecule. We suggest, that the surface potential-based switch of the EF-loop is the missing link between the movement of helix F and the transient surface potential change detected during the photocycle of bacteriorhodopsin. Second, in the visual pigment rhodopsin, with the fluorescent dye bound to position 316, a particularly striking pH-dependent conformational change of the fourth loop on the cytoplasmic surface was analyzed. The loop mobility increased from pH 5 to 8. The midpoint of this transition is at pH 6.2 and correlates with the midpoint of the pH-dependent equilibrium between the active metarhodopsin II and the inactive metarhodopsin I state.  相似文献   

16.
A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Modification with Alexa594 allowed the monitoring of fluorescence changes at a red excitation light wavelength of 605 nm, thus avoiding significant rhodopsin bleaching. Upon absorption of a photon by rhodopsin, the fluorescence intensity increased as much as 20% at acidic pH with an apparent pK(a) of approximately 6.8 at 4 degrees C, and was sensitive to the presence of hydroxylamine. These findings indicated that the increase in fluorescence is specific for metarhodopsin II. In the presence of transducin, a significant increase in fluorescence was observed. This increase of fluorescence emission intensity was reduced by addition of GTP, in agreement with the fact that transducin enhances the formation of metarhodopsin II. Under conditions that favored the formation of a metarhodopsin II-Alexa594 complex, transducin slightly decreased the fluorescence. In the presence of arrestin, under conditions that favored the formation of metarhodopsin I or II, a phosphorylated, photolyzed rhodopsin-Alexa594 complex only slightly decreased the fluorescence intensity, suggesting that the cytoplasmic surface structure of metarhodopsin II is different in the complex with arrestin and transducin. These results demonstrate the application of Alexa594-modified rhodopsin (Alexa594-rhodopsin) to continuously monitor the conformational changes in rhodopsin during light-induced transformations and its interactions with other proteins.  相似文献   

17.
Sato K  Yamashita T  Imamoto Y  Shichida Y 《Biochemistry》2012,51(21):4300-4308
Visual pigments in rod and cone photoreceptor cells of vertebrate retinas are highly diversified photoreceptive proteins that consist of a protein moiety opsin and a light-absorbing chromophore 11-cis-retinal. There are four types of cone visual pigments and a single type of rod visual pigment. The reaction process of the rod visual pigment, rhodopsin, has been extensively investigated, whereas there have been few studies of cone visual pigments. Here we comprehensively investigated the reaction processes of cone visual pigments on a time scale of milliseconds to minutes, using flash photolysis equipment optimized for cone visual pigment photochemistry. We used chicken violet (L-group), chicken blue (M1-group), chicken green (M2-group), and monkey green (L-group) visual pigments as representatives of the respective groups of the phylogenetic tree of cone pigments. The S, M1, and M2 pigments showed the formation of a pH-dependent mixture of meta intermediates, similar to that formed from rhodopsin. Although monkey green (L-group) also formed a mixture of meta intermediates, pH dependency of meta intermediates was not observed. However, meta intermediates of monkey green became pH dependent when the chloride ion bound to the monkey green was replaced with a nitrate ion. These results strongly suggest that rhodopsin and S, M1, and M2 cone visual pigments share a molecular mechanism for activation, whereas the L-group pigment may have a special reaction mechanism involving the chloride-binding site.  相似文献   

18.
Lewis JW  Szundi I  Kliger DS 《Biochemistry》2000,39(27):7851-7855
Suspensions of bovine rhodopsin in 2% lauryl maltoside detergent were treated with Cu(phen)(3)(2+) to form a disulfide bridge between cysteines 140 and 222 which occur naturally in the bovine rhodopsin sequence. Absorption difference spectra were collected after excitation with a pulse of 477 nm light on the time scale from 1 micros to 690 ms, and the results were analyzed using global exponential fitting. Only two exponentials could be fit to data from the Cu(phen)(3)(2+)-treated rhodopsin, while three exponentials were needed to fit data either from untreated rhodopsin or from Cu(phen)(3)(2+)-oxidized rhodopsin after further dithiothreitol reduction. Dithiothreitol treatment of rhodopsin which had not been previously oxidized with Cu(phen)(3)(2+) had no effect on the observed kinetics. Since the 140-222 disulfide has previously been shown to block transducin activation, its effects on rhodopsin activation are of considerable interest. Cu(phen)(3)(2+) treatment favors formation of the meta I(380) intermediate relative to meta I(480) and slows formation of meta II from meta I(380). This suggests that the protein change involved in meta I(380) formation is similar to the structural constraint introduced by the 140-222 disulfide. These results show that formation of disulfides in rhodopsin has potential as a tool for discriminating between the three isochromic, 380 nm absorbing intermediates involved in rhodopsin activation and for gaining insight into how their structures differ.  相似文献   

19.
Bovine α-lactalbumin (BLA) is known to be present in molten globule form in its apo-state (i.e., Ca2+ depleted state). We explored the organization and dynamics of the functionally important tryptophan residues of BLA in native, molten globule and denatured states utilizing the wavelength-selective fluorescence approach. We observed red edge excitation shift (REES) of 7 nm for the tryptophans in native BLA. Interestingly, we show here that BLA tryptophans exhibit considerable REES (8 nm) in its molten globule state. Taken together, these results indicate that tryptophan residues in BLA in native as well as molten globule states experience motionally restricted environment. We further show that even the denatured form of BLA exhibits a modest REES of 3 nm, indicating that the tryptophans are shielded from bulk solvent, even when denatured, due to the presence of residual structure around tryptophan(s). This is further supported by wavelength-dependent changes in fluorescence anisotropy and lifetime for BLA tryptophans. These novel results constitute one of the first reports of REES in the molten globule state of proteins, and could provide vital insight into the role of tryptophans in the function of BLA in its molten globule state in particular, and other partially ordered proteins in general.  相似文献   

20.
Fluorescence Relaxation Kinetics from Rhodopsin and Isorhodopsin   总被引:1,自引:0,他引:1       下载免费PDF全文
The fluorescence kinetics of bovine rhodopsin and isorhodopsin excited with a single picosecond laser pulse have been measured with a streak camera. The rise and the decay time of the intrinsic fluorescence emission from rhodopsin and isorhodopsin are found to be <12 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号