首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim is to explore the similarities in structural fluctuations of homologous kinases. Gaussian Network Model based Normal Mode Analysis was performed on 73 active conformation structures in Ser/Thr/Tyr kinase superfamily. Categories of kinases with progressive evolutionary divergence, viz. (i) Same kinase with many crystal structures, (ii) Within‐Subfamily, (iii) Within‐Family, (iv) Within‐Group, and (v) Across‐Group, were analyzed. We identified a flexibility signature conserved in all kinases involving residues in and around the catalytic loop with consistent low‐magnitude fluctuations. However, the overall structural fluctuation profiles are conserved better in closely related kinases (Within‐Subfamily and Within‐family) than in distant ones (Within‐Group and Across‐Group). A substantial 65.4% of variation in flexibility was not accounted by variation in sequences or structures. Interestingly, we identified substructural residue‐wise fluctuation patterns characteristic of kinases of different categories. Specifically, we recognized statistically significant fluctuations unique to families of protein kinase A, cyclin‐dependent kinases, and nonreceptor tyrosine kinases. These fluctuation signatures localized to sites known to participate in protein‐protein interactions typical of these kinase families. We report for the first time that residues characterized by fluctuations unique to the group/family are involved in interactions specific to the group/family. As highlighted for Src family, local regions with differential fluctuations are proposed as attractive targets for drug design. Overall, our study underscores the importance of consideration of fluctuations, over and above sequence and structural features, in understanding the roles of sites characteristic of kinases. Proteins 2016; 84:957–978. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
3.
The initial steps of heat-induced inactivation and aggregation of the enzyme rhodanese have been studied and found to involve the early formation of modified but catalytically active conformations. These intermediates readily form active dimers or small oligomers, as evident from there being only a small increase in light scattering and an increase in fluorescence energy homotransfer from rhodanese labeled with fluorescein. These species are probably not the domain-unfolded form, as they show activity and increased protection of hydrophobic surfaces. Cross-linking with glutaraldehyde and fractionation by gel filtration show the predominant formation of dimer during heat incubation. Comparison between the rates of aggregate formation at 50 degrees C after preincubation at 25 or 40 degrees C gives evidence of product-precursor relationships, and it shows that these dimeric or small oligomeric species are the basis of the irreversible aggregation. The thermally induced species is recognized by and binds to the chaperonin GroEL. The unfoldase activity of GroEL subsequently unfolds rhodanese to produce an inactive conformation and forms a stable, reactivable complex. The release of 80% active rhodanese upon addition of GroES and ATP indicates that the thermal incubation induces an alteration in conformation, rather than any covalent modification, which would lead to formation of irreversibly inactive species. Once oligomeric species are formed from the intermediates, GroEL cannot recognize them. Based on these observations, a model is proposed for rhodanese aggregation that can explain the paradoxical effect in which rhodanese aggregation is reduced at higher protein concentration.  相似文献   

4.
The interaction of nitric oxide (NO) with haem proteins is widespread in biology. In the current paper, we present the first ultrafast 2D-IR (two-dimensional infrared) spectroscopic analysis of haem nitrosylation, which has been combined with time-resolved IR pump-probe studies to investigate the relationship between equilibrium vibrational dynamics of the haem environment and ligand rebinding behaviour following photolysis of NO from the Fe(III)-NO site. Studies of two haem proteins, Mb (myoglobin) and Cc (cytochrome c), which play different physiological roles, reveal marked contrasts in the ultrafast fluctuations of the protein pockets containing the haem, showing that the Mb pocket is somewhat more flexible than that of Cc. This correlates strongly with slower observed photolysis rebinding kinetics of Mb-NO compared with Cc-NO, and indicates a direct link between ultrafast fluctuations and biological functionality. Furthermore, this indicates the validity of linear response theories in relation to protein ligand binding. Finally, 2D-IR shows that Cc-NO displays two distinct structural sub-sites at room temperature that do not exchange on the timescales accessible via the NO vibrational lifetime.  相似文献   

5.
The hydrogen–deuterium exchange reaction for the tryptophan residues in lysozyme have been followed in 4.5M LiBr at pH 7.2 in the temperature range of the unfolding transition by measuring the transmittance change at 293 nm. The exchange reaction proceeded in three phases at low temperature for native protein. The first and the second phases were ascribed to the H-D exchange reactions of three relatively exposed tryptophan residues on the molecular surface. The third phase corresponded to the H-D exchange reaction of the three tryptophan residues buried in the interior of the molecule. The H-D exchange reaction proceeded in two phases near the melting temperature and in a single phase at high temperature, where almost all molecules are unfolded. The H-D exchange of three tryptophan residues buried in folded molecules was caused by fluctuation between the folded and unfolded structure of the protein molecule. The rates of such a fluctuation were determined from the rates of the exchange reaction at various temperatures. These rates agreed very well with those determined from the temperature-jump method. This means that a protein molecule in solution fluctuates between the N- and D-states at every temperature within the transition region, where the N-form is the tightly folded native structure and the D-form the randomly coiled chain. From measurements of thermal unfolding of ester-108-lysozyme and the binding constant of (NAG)3 to ester-108-lysozyme, it was found that almost all cross-linked molecules are in the folded state near 50°C and pH 7.2 in 4.5M LiBr, where intact molecules are unfolded. We also studied the H-D exchange reaction of ester-108-lysozyme. In the temperature region of 43–50°C, about 70% of the exchangeable tryptophan residues of ester-108-lysozyme were exchanged within 1 s immediately after the mixing of D2O, in spite of the fact that almost all molecules are in the folded state. This was considered the premelting of the surface of a corss-linked molecule.  相似文献   

6.
Protein intermediates in equilibrium with native states may play important roles in protein dynamics but, in cases, can initiate harmful aggregation events. Investigating equilibrium protein intermediates is thus important for understanding protein behaviour (useful or pernicious) but it is hampered by difficulties in gathering structural information. We show here that the phi-analysis techniques developed to investigate transition states of protein folding can be extended to determine low-resolution three-dimensional structures of protein equilibrium intermediates. The analysis proposed is based solely on equilibrium data and is illustrated by determination of the structure of the apoflavodoxin thermal unfolding intermediate. In this conformation, a large part of the protein remains close to natively folded, but a 40 residue region is clearly unfolded. This structure is fully consistent with the NMR data gathered on an apoflavodoxin mutant designed specifically to stabilise the intermediate. The structure shows that the folded region of the intermediate is much larger than the proton slow-exchange core at 25 degrees C. It also reveals that the unfolded region is made of elements whose packing surface is more polar than average. In addition, it constitutes a useful guide to rationally stabilise the native state relative to the intermediate state, a far from trivial task.  相似文献   

7.
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.  相似文献   

8.
Newly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold. The recently introduced protein structure alignment tool, GANGSTA, is specialized to perform nonsequential alignments with proper assignment of the secondary structure types by focusing on helices and strands only. In the new version, GANGSTA+, the underlying algorithms were completely redesigned, yielding enhanced quality of structure alignments, offering alignment against a larger database of protein structures, and being more efficient. We applied DaliLite, TM-align, and GANGSTA+ on three protein crystal structures considered to be novel folds. Applying GANGSTA+ to these novel folds, we find proteins in the ASTRAL40 database, which possess significant structural similarities, albeit the alignments are nonsequential and in some cases involve secondary structure elements aligned in reverse orientation. A web server is available at http://agknapp.chemie.fu-berlin.de/gplus for pairwise alignment, visualization, and database comparison.  相似文献   

9.
10.
It is generally believed that plants "evolved a strategy of defending themselves from a phytopathogen attack" during evolution. This metaphor is used frequently, but it does not facilitate understanding of the mechanisms providing plant resistance to the invasion of foreign organisms and to other unfavorable external factors, as well as the role of these mechanisms in plant growth and development. Information on processes involving one of the plant resistance factors--polygalacturonase-inhibiting protein (PGIP)--is considered in this review. The data presented here indicate that PGIP, being an extracellular leucine-rich repeat-containing protein, performs important functions in the structure of plant cell wall. Amino acid residues participating in PGIP binding to homogalacturonan in the cell wall have been determined. The degree of methylation and the mode of distribution of homogalacturonan methyl groups are responsible for the formation of a complex structure, which perhaps determines the specificity of PGIP binding to pectin. PGIP is apparently one of the components of plant cell wall determining some of its mechanical properties; it is involved in biochemical processes related to growth, expansion, and maceration, and it influences plant morphology. Polygalacturonase (PG) is present within practically all plant tissues, but the manifestation of its activity varies significantly depending on physiological conditions in the tissue. Apparently, the regulation of PG functioning in apoplast significantly affects the development of processes associated with the modification of the structure of plant cell wall. PGIP can regulate PG activity through binding to homogalacturonan. The genetically determined structure of PGIP in plants determines the mode of its interaction with an invader and perhaps is one of the factors responsible for the set of pathogens causing diseases in a given plant species.  相似文献   

11.
12.
Synaptonemal complexes (SCs) are evolutionarily conserved nuclear structures of meiotic cells which form during the zygotene stage of the first meiotic prophase and are responsible for the pairing of homologous chromosomes. Their formation appears to be a prerequisite for crossing-over events and proper chromosome segregation during the first meiotic division. Despite knowledge of their central role in genetic recombination processes very little is known about the molecular composition and the mechanisms governing the assembly of the SCs. In the present study we report on the characterization of a monoclonal antibody (SC14f10) which enabled us to identify a novel SC protein termed SC48. Protein SC48 has a Mr of 48,000 and migrates in two-dimensional gels with a pH value of 6.9. By means of immunogold EM we localized this protein to the central region of the SC. In cell fractionation experiments we recovered protein SC48 together with SC-residual structures in a karyoskeletal fraction of pachytene spermatocytes. Our results indicate that SC48 is a meiosis-specific structural protein component of the SC probably involved in the pairing of homologous chromosomes.  相似文献   

13.
14.
15.
Cellular motions and thermal fluctuations: the Brownian ratchet.   总被引:26,自引:5,他引:21       下载免费PDF全文
We present here a model for how chemical reactions generate protrusive forces by rectifying Brownian motion. This sort of energy transduction drives a number of intracellular processes, including filopodial protrusion, propulsion of the bacterium Listeria, and protein translocation.  相似文献   

16.
A protease-resistant protein is a structural component of the scrapie prion   总被引:67,自引:0,他引:67  
Fractions purified from scrapie-infected hamster brain contain a unique protein, designated PrP. It was labeled with N-succinimidyl 3-(4-hydroxy-5-[125I]-iodophenyl) propionate, which did not alter the titer of the scrapie prion. The concentration of PrP was found to be directly proportional to the titer of the infectious prion. Both PrP and prion infectivity were resistant for 2 hr at 37 degrees C to hydrolysis by proteinase K under nondenaturing conditions. Prolonging the digestion resulted in a concomitant decrease in both PrP and the scrapie prion. When the amino-acid-specific proteases trypsin or SV-8 protease were used instead of proteinase K, no change in either PrP or the prion was detected. The parallel changes between PrP and the prion provide evidence that PrP is a structural component of the infectious prion. Our findings also suggest that the prion contains only one major protein, namely PrP.  相似文献   

17.
Structural dynamics is essential for the biological function of proteins. Results from new experimental techniques should be compared with those from previous experiments in order to obtain a consistent picture of the physics of intramolecular fluctuations and conformational changes. The high intensity and time structure of synchrotron radiation have made possible time-resolved X-ray structure analysis and the determination of phonon density spectra through the M?ssbauer effect. By combining results from M?ssbauer absorption spectroscopy, incoherent neutron scattering, low-temperature crystallography and optical spectroscopy, a physical picture of protein dynamics emerges.  相似文献   

18.
B Gavish  M M Werber 《Biochemistry》1979,18(7):1269-1275
The effect of viscosity on the rate of catalysis of carboxypeptidase A has been tested. By use of the tripeptide carbobenzoxy-l-alanyl-l-alanyl-l-alanine [Z(L-Ala)3] as substrate, it was shown that most of the effect on the hydrolysis rate caused by the presence of 30 or 40% methanol or glycerol in aqueous solution can be ascribed to a contribution of viscosity to the catalytic rate constant, kcat. Arrhenius plots of kcat in 30 and 40% glycerol or methanol are linear and almost parallel. When the rate constants are "corrected" for the viscosity of various media, the difference between the various Arrhenius plots is considerably reduced; it vanishes, within experimental error, when the effect of the dielectric constant of the solutions is taken into account as well. It is proposed that the viscosity of the medium can influence the rate-limiting step of the enzymic reaction, which is the rate of transitions over the energy barrier preceding product formation. According to the suggested mechanism, the enzyme--substrate complex can overcome this energy barrier by viscosity-dependent structural fluctuations. The quantitative agreement between the theory and the experimental results suggests that (a) due to the temperature dependence of the viscosity of the solution, the potential energy barrier of the reaction is about 5 kcal/mol lower than the observed activation energy and (b) information about the structural flexibility of the complex can be obtained by kinetic measurements.  相似文献   

19.
A review of physicochemical properties, photochemistry, functions, and evolution of retinal-containing proteins (microbial and of metazoan rhodopsins, mostly visual rhodopsins) is provided. Comparative physiology of visual rhodopsins is considered in detail, mainly the molecular mechanisms of their spectral tuning.  相似文献   

20.
The stability of a protein or of its folding intermediates is frequently characterized by its resistance to chemical and/or thermal denaturation. The folding/unfolding process is generally followed by spectroscopic methods such as absorbance, fluorescence, circular dichroism spectroscopy, etc. Here, we demonstrate a new method, by using HPLC, for determining the thermal unfolding transitions of disulfide-containing proteins and their structured folding intermediates. The thermal transitions of a model protein, ribonuclease A (RNase A), and a recently found unfolding intermediate of onconase (ONC), des [30-75], have been estimated by this method. Finally, the advantages of this method over traditional techniques are discussed by providing specific examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号