首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the results of the quantitative study of Streptococcus salivarius adhering to buccal epithelial cells, three levels of their natural colonization were established: low (less than 20 bacteria per epithelial cell), medium (20-50 bacteria), and high (more than 50 bacteria). The characteristics of natural colonization by S. salivarius inversely correlated with the resistance of epithelial cells to the adhesion of Pseudomonas aeruginosa. In the process of interaction with P. aeruginosa highly adhesive strain, S. salivarius, naturally colonizing the cells of the buccal epithelium, decreased in number 2-10 times up to complete desorption. These results may be regarded as the manifestation of one of the mechanisms regulating the microecological balance in the system of mucous membranes.  相似文献   

2.
目的 通过比较铜绿假单胞菌和口腔细菌单独或共同作用于肺上皮细胞时,细菌黏附和侵入细胞的能力,探讨细菌间相互作用在呼吸道感染的最初阶段的作用机制.方法 应用培养法和抗生素保护法检测铜绿假单胞菌和口腔细菌单独或共同作用于肺上皮细胞时,细菌黏附和侵入肺上皮细胞的能力.结果 铜绿假单胞菌与口腔细菌共同作用于肺上皮细胞,牙龈卟啉单胞菌和伴放线放线杆菌降低了铜绿假单胞菌的黏附能力,却增强了其侵入能力;而铜绿假单胞菌能够影响口腔细菌对肺上皮细胞的黏附,同时增强口腔细菌侵入肺上皮细胞的能力.结论 口腔细菌,尤其是牙周可疑致病菌主要通过增强铜绿假单胞菌对肺上皮细胞的侵入而影响呼吸道感染过程.  相似文献   

3.
Pseudomonas aeruginosa is an important human pathogen, producing lung infection in individuals with cystic fibrosis (CF), patients who are ventilated and those who are neutropenic. The respiratory epithelium provides the initial barrier to infection. Pseudomonas aeruginosa can enter epithelial cells, although the mechanism of entry and the role of intracellular organisms in its life cycle are unclear. We devised a model of infection of polarized human respiratory epithelial cells with P. aeruginosa and investigated the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in adherence, uptake and IL-8 production by human respiratory epithelial cells. We found that a number of P. aeruginosa strains could invade and replicate within cells derived from a patient with CF. Intracellular bacteria did not produce host cell cytotoxicity over a period of 24 h. When these cells were transfected with wild-type CFTR, uptake of bacteria was significantly reduced and release of IL-8 following infection enhanced. We propose that internalized P. aeruginosa may play an important role in the pathogenesis of infection and that, by allowing greater internalization into epithelial cells, mutant CFTR results in an increased susceptibility of bronchial infection with this microbe.  相似文献   

4.
The aim of this study was to evaluate adherence of 83 strains of Pseudomonas aeruginosa isolated from humans and different animals to trypsin-treated buccal cells. We have demonstrated that Pseudomonas aeruginosa attached to trypsin-treated buccal cells in far greater numbers than to cells from controls (normal buccal epithelial cells). The mean number of bacteria adhering to trypsin-treated cells amounted 107.05 +/- 102.16 and to normal cells - 6.97 +/- 3.53. We conclude that exposure of cells to proteolytic enzymes increases Pseudomonas aeruginosa binding to buccal cells.  相似文献   

5.
Microorganisms gain access to the airways and respiratory epithelial surface during normal breathing. Most inhaled microbes are trapped on the mucous layer coating the nasal epithelium and upper respiratory tract, and are cleared by ciliary motion. Microorganisms reaching the alveolar spaces are deposited on the pulmonary epithelium. This contact initiates complex offensive and defensive strategies by both parties. Here, we briefly outline how the pulmonary pathogen Pseudomonas aeruginosa uses multi-pronged strategies that include cell surface appendages, and secreted and injected virulence determinants to switch from an unobtrusive soil bacterium to a pathogen for lung epithelium colonization. Understanding the complex interactions between the lung epithelium and P. aeruginosa might enable more effective therapeutic strategies against infection in cystic fibrosis and immuno-compromised individuals.  相似文献   

6.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been proposed to be an epithelial cell receptor for Pseudomonas aeruginosa involved in bacterial internalization and clearance from the lung. We evaluated the role of CFTR in clearing P. aeruginosa from the respiratory tract using transgenic CF mice that carried either the DeltaF508 Cftr allele or an allele with a Cftr stop codon (S489X). Intranasal application achieved P. aeruginosa lung infection in inbred C57BL/6 DeltaF508 Cftr mice, whereas DeltaF508 Cftr and S489X Cftr outbred mice required tracheal application of the inoculum to establish lung infection. CF mice showed significantly less ingestion of LPS-smooth P. aeruginosa by lung cells and significantly greater bacterial lung burdens 4.5 h postinfection than C57BL/6 wild-type mice. Microscopy of infected mouse and rhesus monkey tracheas clearly demonstrated ingestion of P. aeruginosa by epithelial cells in wild-type animals, mostly around injured areas of the epithelium. Desquamating cells loaded with P. aeruginosa could also be seen in these tissues. No difference was found between CF and wild-type mice challenged with an LPS-rough mucoid isolate of P. aeruginosa lacking the CFTR ligand. Thus, transgenic CF mice exhibit decreased clearance of P. aeruginosa and increased bacterial burdens in the lung, substantiating a key role for CFTR-mediated bacterial ingestion in lung clearance of P. aeruginosa.  相似文献   

7.
8.
Oral and sputum isolates of Pseudomonas aeruginosa in patients with cystic fibrosis were investigated. Of the 17 patients studied, 12 patients (71%) yielded both mucoid and nonmucoid variants of Pseudomonas aeruginosa from sputum and (or) various oral ecological sites, such as buccal mucosa, tongue dorsum, dental plaques, and saliva. A total of 51 strains of mucoid and nonmucoid Pseudomonas aeruginosa were isolated from these patients and were phenotypically characterized by both pyocine typing and serotyping. Five patients (42%) were colonized or infected by a single strain of Pseudomonas aeruginosa, whereas 7 patients (58%) were cocolonized or coinfected by two or more phenotypically different strains of Pseudomonas aeruginosa. To understand the mechanisms involved in Pseudomonas aeruginosa colonization, it may be necessary to identify multiple isolates of Pseudomonas aeruginosa not only from the sputum but also from the various oral ecological sites and to further explore the role of the oral cavity in this colonization.  相似文献   

9.
细菌性慢性呼吸道感染是严重威胁人类健康和制约社会经济发展的常见疾病。呼吸道环境和结构的复杂性导致慢性感染病灶常常定植着多种病原菌,如铜绿假单胞菌Pseudomonas aeruginosa、金黄色葡萄球菌Staphylococcus aureus、大肠埃希氏菌Escherichia coli、肺炎克雷伯氏菌Klebsiella pneumoniae、鲍曼不动杆菌Acinetobacter baumannii和白色念珠菌Candida albicans等。这些病原菌在慢性呼吸道感染的发展过程中进化出了合作、竞争、共生等复杂的种间关系,通过形成相对稳定的群落系统使多种病原菌成为一个整体来应对呼吸道各种苛刻的生存条件,从而导致呼吸道感染针对性治疗的失败或病情反复。目前国际上关于病原菌种间互作关系的研究正处于起步阶段,临床证据表明铜绿假单胞菌的定植与慢性呼吸道感染的发生、发展息息相关,并且该菌可以利用群体感应系统来主导与其他病原菌的互作与共存。因此,本文围绕群体感应系统综述了铜绿假单胞菌与其他常见呼吸道感染病原菌的种间关系和互作机理,可加深人们对病原菌种间互作与慢性呼吸道感染相关疾病关联性的认识,并为进一步临床治疗方案的改进、疾病控制和新型抗感染药物的研发提供新视角、新方向。  相似文献   

10.
Clara cell secretory protein (CCSP) is a 16-kDa homodimeric polypeptide secreted by respiratory epithelial cells in the conducting airways of the lung. To assess the role of CCSP in bacterial inflammation and to discern whether CCSP expression is influenced by bacterial infection, CCSP-deficient [(-/-)] gene-targeted mice and wild-type mice were given Pseudomonas aeruginosa intratracheally. Infiltration by polymorphonuclear cells was significantly increased in the lungs of CCSP(-/-) mice 6 and 24 h after the administration of the bacteria. The number of viable bacteria isolated from the lungs in CCSP(-/-) mice was decreased compared with that in wild-type mice. Concentrations of the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha were modestly increased after 6 and 24 h, respectively, in CCSP(-/-) mice. The concentration of CCSP protein in lung homogenates decreased for 1-5 days after infection and recovered by 14 days after infection. Likewise, CCSP mRNA and immunostaining for CCSP markedly decreased in respiratory epithelial cells after infection. CCSP deficiency was associated with enhanced pulmonary inflammation and improved killing of bacteria after acute pulmonary infection with P. aeruginosa. The finding that Pseudomonas infection inhibited CCSP expression provides further support for the concept that CCSP plays a role in the modulation of pulmonary inflammation during infection and recovery.  相似文献   

11.
Tamm-Horsfall glycoprotein (THP) is the most abundant protein which is synthesized by renal tubular cells and excreted in urine. Its role in urinary tract infection has yet not been identified. In the present study, the contribution of THP towards adherence of Pseudomonas aeruginosa to uroepithelial cells and murine peritoneal macrophages was studied. Decreased adherence of THP-coated P. aeruginosa to UECs and phagocytes was observed in vitro. In vivo, P. aeruginosa showed increased renal bacterial load and tissue pathology in a mouse model of acute ascending pyelonephritis, when THP-coated P. aeruginosa was used to cause infection. This study shows that THP may not necessarily act as a host defense component; rather, it may help in renal colonization of P. aeruginosa in vivo.  相似文献   

12.
Bordetella pertussis is a re-emerging human respiratory pathogen whose infectious process is not fully understood, hampering the design of effective vaccines. The nature of bacterial attachment to host cells is a key event in the outcome of the infection. However, host cell receptors involved in B. pertussis colonization of the respiratory tract are still under investigation. Here, we report that cholesterol-rich domains are involved in B. pertussis adhesion to epithelial cells. Treatment of A549 cells with cholesterol-sequestering drugs such as methyl-β-cyclodextrin, nystatin, or filipin resulted in a significant decrease of B. pertussis attachment. Confocal laser microscopy studies showed B. pertussis associated with cholesterol-rich domains. Accordingly, B. pertussis was found in detergent-resistant membrane domain fractions isolated from bacterial-infected A549 cells. Our results indicate a main role of filamentous hemagglutinin, an environmentally regulated virulence factor, in this interaction, and a specific affinity for cholesterol, one of the major components of traqueal secretions, which might additionally contribute to the effective colonization of the respiratory tract.  相似文献   

13.
Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known receptors for these bacteria. All viruses enhanced bacterial adhesion to primary and immortalized cell lines. RSV and HPIV-3 infection increased the expression of several known receptors for pathogenic bacteria by primary bronchial epithelial cells and A549 cells but not by primary small airway epithelial cells. Influenza virus infection did not alter receptor expression. Paramyxoviruses augmented bacterial adherence to primary bronchial epithelial cells and immortalized cell lines by up-regulating eukaryotic cell receptors for these pathogens, whereas this mechanism was less significant in primary small airway epithelial cells and in influenza virus infections. Respiratory viruses promote bacterial adhesion to respiratory epithelial cells, a process that may increase bacterial colonization and contribute to disease. These studies highlight the distinct responses of different cell types to viral infection and the need to consider this variation when interpreting studies of the interactions between respiratory cells and viral pathogens.  相似文献   

14.
Pseudomonas aeruginosa adherence to fibronectin has been shown to be important to bacterial colonization and infection. To better understand the mechanisms involved in this interaction, the role of the carbohydrate moiety of the fibronectin molecule in P. aeruginosa adhesion was studied. Strain NK 125 502 adhered to immobilized fibronectin with an adherence index of 4.8 x 10(5) CFU/ micro g. Periodic oxidation of fibronectin markedly reduced the adhesion of P. aeruginosa, while a neuraminidase treatment increased bacteria adhesion. N-Acetylgalactosamine, N-acetylglucosamine, sialic acid, and also lectin PA-IL worked as efficient inhibitors in adhesion assays: 59%, 70.7%, 100%, and 60% of inhibition, respectively. We have demonstrated here the involvement of a lectin-like process in the interaction of P. aeruginosa NK 125 502 with immobilized fibronectin.  相似文献   

15.
阻断白色念珠菌粘附口腔膜上皮细胞的实验研究   总被引:7,自引:0,他引:7  
白色念珠菌的粘附与其表面甘露糖结构有关,为探讨阻断粘附的方法,我们采用体外法测定其对口腔上皮细胞的粘附数量,显示:白色念珠菌粘附感染上皮细胞后,甘露糖可以在一定程度上减少粘附,绿慕安及刀豆素A可以有效地减少粘附。提示甘露糖及绿慕安可能有助于治疗白色念珠菌感染。  相似文献   

16.
17.
目的了解神经外科重症监护室(NICU)颅内出血患者下呼吸道感染病原菌的种类及耐药情况,为临床合理用药提供依据。方法对2010年1月至2011年1月颅内出血的患者,其下呼吸道感染病原菌的种类及耐药性进行回顾性分析。结果分离出的374例病原菌中以革兰阴性杆菌为主,占81.8%,革兰阳性球菌占4.0%,真菌占14.2%。分离率较高的细菌依次为鲍曼不动杆菌、铜绿假单胞菌、肺炎克雷伯菌、嗜麦芽窄食单胞菌、金黄色葡萄球菌。其中,产超广谱β-内酰胺酶(ESBLs)的肺炎克雷伯菌的检出率为50.0%;耐甲氧西林金黄色葡萄球菌(MRSA)的检出率为73.3%。鲍曼不动杆菌和铜绿假单胞菌对丁胺卡那、妥布霉素、多粘菌素B有较好的敏感性;而金黄色葡萄球菌对复方新诺明、呋喃妥因、万古霉素耐药率较低。结论NICU颅内出血患者下呼吸道感染以多重耐药的革兰阴性杆菌为主,临床应根据药敏结果合理用药,控制和减少感染的发生。  相似文献   

18.
Human beta-defensin-2.   总被引:42,自引:0,他引:42  
Human beta-defensin-2 (HBD-2) is a cysteine-rich cationic low molecular weight antimicrobial peptide recently discovered in psoriatic lesional skin. It is produced by a number of epithelial cells and exhibits potent antimicrobial activity against Gram-negative bacteria and Candida, but not Gram-positive Staphylococcus aureus. HBD-2 represents the first human defensin that is produced following stimulation of epithelial cells by contact with microorganisms such as Pseudomonas aeruginosa or cytokines such as TNF-alpha and IL-1 beta. The HBD-2 gene and protein are locally expressed in keratinocytes associated with inflammatory skin lesions such as psoriasis as well as in the infected lung epithelia of patients with cystic fibrosis. It is intriguing to speculate that HBD-2 is a dynamic component of the local epithelial defense system of the skin and respiratory tract having a role to protect surfaces from infection, and providing a possible reason why skin and lung infections with Gram-negative bacteria are rather rare.  相似文献   

19.
Adherence of Pseudomonas aeruginosa to a patient's epithelial surface is thought to be an important first step in the infection process. Pseudomonas aeruginosa is capable of attaching to epithelial cells via its pili, yet little is known about the epithelial receptors of this adhesin. Using nitrocellulose replicas of polyacrylamide gels of solubilized human buccal epithelial cells (BECs), glycoproteins (Mz: 82,000, and four bands between 40,000 and 50,000) that bound purified pili from P. aeruginosa strain K (PAK) were identified by immunoblotting with a pilus-specific monoclonal antibody that does not affect pilus binding to BECs (PK3B). All pilus-binding glycoproteins were surface localized, as determined by surface radioiodination of intact BECs. Binding of pili to all of the glycoproteins was inhibited by Fab fragments of monoclonal antibody PK99H, which inhibits PAK pili binding to BECs by binding to or near the binding domain of the pilus, but not by Fab fragments of monoclonal antibody PK41C, which binds to PAK pilin but does not inhibit pili binding to BECs, demonstrating that pilus binding to these glycoproteins is likely via the same region of the pilus that binds to intact BECs. Periodate oxidation of the blot eliminated pili binding to all glycoproteins, indicating that a carbohydrate moiety is an important determinant for pilus-binding activity. However, not all of the glycoproteins exhibited the same degree of sensitivity to periodate oxidation. Furthermore, monosaccharide inhibition of pilus binding to BECs implicated L-fucose and N-acetylneuraminic acid as receptor moieties.  相似文献   

20.
To assess the role of lysozyme in pulmonary host defense in vivo, transgenic mice expressing rat lysozyme cDNA in distal respiratory epithelial cells were generated. Two transgenic mouse lines were established in which the level of lysozyme protein in bronchoalveolar (BAL) lavage fluid was increased 2- or 4-fold relative to that in WT mice. Lung structure and cellular composition of BAL were not altered by the expression of lysozyme. Lysozyme activity in BAL was significantly increased (6.6- and 17-fold) in 5-wk-old animals from each transgenic line. To determine whether killing of bacteria was enhanced by expression of rat lysozyme, 5-wk-old transgenic mice and WT littermates were infected with 10(6) CFU of group B streptococci or 10(7) CFU of a mucoid strain of Pseudomonas aeruginosa by intratracheal injection. Killing of group B streptococci was significantly enhanced (2- and 3-fold) in the mouse transgenic lines at 6 h postinfection and was accompanied by a decrease in systemic dissemination of pathogen. Killing of Pseudomonas aeruginosa was also enhanced in the transgenic lines (5- and 30-fold). Twenty-four hours after administration of Pseudomonas aeruginosa, all transgenic mice survived, whereas 20% of the WT mice died. Increased production of lysozyme in respiratory epithelial cells of transgenic mice enhanced bacterial killing in the lung in vivo, and was associated with decreased systemic dissemination of pathogen and increased survival following infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号