首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of aminoresorcinols and related compounds were tested for rat intestinal alpha-glucosidase inhibition and these results suggested that the 2-aminoresorcinol moiety of 6-amino-5,7-dihydroxyflavone (2) is important to exert the intestinal alpha-glucosidase inhibitory activity and 2-aminoresorcinol (4), itself, is a potent alpha-glucosidase inhibitor and inhibited sucrose-hydrolyzing activity of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

2.
The SAR studies suggested that the C-ring of baicalein (1) was not necessary for the activity, and validated the importance of 2,3,4-trihydroxybenzoyl structure of 1. Thus, a series of 2,3,4-trihydroxybenzoyl-containing flavonoid analogs were investigated for the alpha-glucosidase inhibitory activity. The results indicated that 5,6,7-trihydroxy-2-phenyl-4-quinolone (2) and 5,6,7-trihydroxyflavanone (4) showed the comparable activity to 1, while 3,5,6,7-tetrahydroxyflavone (7), 5,6,7-trihydroxyisoflavone (8), and 6-hydroxygenistein (9) showed moderate alpha-glucosidase inhibitory activity. In addition, it was found that 6-amino-5,7-dihydroxyflavone (16) was a more potent and specific rat intestinal alpha-glucosidase inhibitor than 1, and showed the comparable activity to acarbose. This is the first report on mammalian intestinal alpha-glucosidase inhibitory activity of 6-aminoflavones. Kinetic studies revealed that 16 inhibited both sucrose- and maltose-hydrolyzing activities of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

3.
Novel, highly selective and potent thrombin inhibitors were identified as a result of combing the 3-benzylsulfonylamino-2-pyridinone acetamide P(2)-P(3) surrogate with weakly basic partially saturated heterobicyclic P(1)-arginine mimetics 1-8. The design, synthesis, biological activity, and the binding modes of non-covalent thrombin inhibitors featuring P(1)-4,5,6,7-tetrahydroindazole, 5,6,7,8-tetrahydroquinazoline, and 4,5,6,7-tetrahydrobenzothiazole moieties are described.  相似文献   

4.
Oleanolic acid (1) and five synthetic derivatives (2-6) were tested spectrophotometrically for inhibition of urease, beta-lactamase, acetyl cholinesterase and alpha-glucosidase. All products showed a positive response only against alpha-glucosidase but not against the other enzymes; IC(50) calculations showed that the dihydroxy-olide derivative (4) was the most potent among all tested samples.  相似文献   

5.
Optimization of lead compounds 1 and 2 resulted in novel, selective, and potent thrombin inhibitors incorporating weakly basic heterobicyclic P(1)-arginine mimetics. The design, synthesis, and biological activity of racemic thrombin inhibitors 17-29 and enantiomerically pure thrombin inhibitors 30-33 are described. The arginine side-chain mimetics used in this study are 4,5,6,7-tetrahydro-1,3-benzothiazol-2-amine, 4,5,6,7-tetrahydro-2H-indazole, and 2-imino-4,5,6,7-tetrahydro-1,3-benzothiazol-3(2H)-ylamine.  相似文献   

6.
p-Nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha-D - glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside, FG5P, was prepared, taking advantage of the action of Bacillus macerans cyclodextrin glucanotransferase on a mixture of O-6-deoxy-6-[(2-pyridyl)-amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha- D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-glucose and p-nitrophenyl alpha-glucoside. The maltopentaose derivative is resistant to alpha-glucosidase and is suitable as a substrate for the alpha-amylase assay coupled with alpha-glucosidase in which the activity of alpha-amylase is determined by measuring the amount of p-nitrophenol liberated by alpha-glucosidase from p-nitrophenyl alpha-glucoside and p-nitrophenyl alpha-maltoside produced by the action of alpha-amylase. This alpha-amylase assay method was applied for determination of alpha-amylases in human serum.  相似文献   

7.
The design, synthesis and biological activity of non-covalent thrombin inhibitors incorporating 4,5,6,7-tetrahydroindazole, 2-methyl-4,5,6,7-tetrahydroindazole, 4,5,6,7-tetrahydroisoindole, 5,6,7,8-tetrahydroquinazoline and 5,6,7,8-tetrahydroquinazolin-2-amine as novel, partially saturated, heterobicyclic P(1)-arginine side-chain mimetics is described. The binding mode of the most potent candidate in the series co-crystallized with human alpha-thrombin, which exhibited an in vitro K(i) of 140nM and more that 478-fold selectivity against trypsin, is discussed.  相似文献   

8.
Four alkaloids named piperumbellactams A-D (1-4) were isolated from branches of Piper umbellatum together with known N-hydroxyaristolam II (5), N-p-coumaroyl tyramine (6), 4-nerolidylcatechol (7), N-trans-feruloyltyramine, E-3-(3,4-dihydroxyphenyl)-N-2-[4-hydroxyphenylethyl]-2-propenamide, beta-amyrin, friedelin, apigenin 8-C-neohesperidoside, acacetin 6-C-beta-d-glucopyranoside, beta-sitosterol, its 3-O-beta-d-glucopyranoside and its 3-O-beta-d-[6'-dodecanoyl]-glucopyranoside. Glycosidase inhibition, antioxidant and antifungal activities of these compounds were evaluated. Compounds 1-3 showed moderate alpha-glucosidase enzyme inhibition with IC50 values 98.07+/-0.44, 43.80+/-0.56 and 29.64+/-0.46, respectively. In DPPH radical scavenging assay, compounds 2, 3 and 6 showed potent inhibitory activity while compounds 4, 5 and 7 showed potent antifungal activity.  相似文献   

9.
The hepatic lysosomal glycosidases alpha-glucosidase and beta-glucuronidase were inhibited in vitro and in vivo by mono- and diethanolamines. The in vivo inhibition is dose dependent and occurs at a value less than LD50. Phenyl 6-deoxy-6-(morpholin-4-yl)-beta-D-glucopyranoside inhibited alpha-glucosidase both in vitro and in vivo. The treatment of the enzymes in vitro by ethanolamine exhibited a reversible inhibition of the mixed and competitive types for alpha-glucosidase and beta-glucuronidase, respectively. Diethanolamine showed a reversible inhibition of the competitive type for both enzymes. It is a potent inhibitor for beta-glucuronidase, in vitro, whose inhibition constant (Ki) is 5 x 10(-5) M. Phenyl 6-deoxy-6-(morpholin-4-yl)-beta-D-glucopyranoside is a potent inhibitor only for hepatic alpha-glucosidase with a Ki value of 1.6 x 10(-5) M. The pattern of the pH dependence of enzymic activity was not affected by ethanolamine inhibition. The magnitude of the inhibition of enzymes is dependent on the structure of the inhibitor.  相似文献   

10.
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.  相似文献   

11.
In our investigation of factor Xa inhibitors, a series of 1-(6-chloronaphthalen-2-yl)sulfonyl-4-(4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine-2-carbonyl)piperazines 3a-i were synthesized. In vitro inhibitory activities of the compounds against factor Xa and coagulation are summarized. Among the compounds, 3c and 3d, possessing a carbamoyl or N-methylcarbamoyl moiety, showed potent inhibitory activities when administered orally to rats.  相似文献   

12.
We designed and synthesized hydrogen bond based probes 1-8 with the exception of known glycosidase inhibition mechanisms, and aglycon specificity of 11 different sources of alpha-glucosidases were investigated using their probes. Probe 4 (2,6-anhydro-1-deoxy-1-[(1-oxopentyl-5-hydroxy)amino]-D-glycero-D-ido-heptitol) showed a potent inhibition of S. cerevisiae alpha-glucosidase among all alpha-glucosidases. Probe 4 was found to be a competitive inhibitor for S. cerevisiae alpha-glucosidase with Ki 0.13 mM.  相似文献   

13.
Chalcones 1-20, a new class of glycosidase inhibitors, were synthesized, and their glycosidase inhibitory activities were investigated. Non-aminochalcones 1-12 had no inhibitory activity, however, aminochalcones 13-20 had strong glycosidase (alpha-glucosidase, alpha-amylase, and beta-amylase) inhibitory activities. In particular, sulfonamide chalcones 17-20 had more potent alpha-glucosidase inhibitory activity than aminated chalcone 13-16. 4'-(p-Toluenesulfonamide)-3,4-dihydroxy chalcone 20 (IC(50)=0.4microM) was the best inhibitor against alpha-glucosidase, and these sulfonamide chalcones showed non-competitive inhibition.  相似文献   

14.
The alpha-amylase (1, 4-alpha-d-glucanohydrolase; EC 3.2.1.1) and alpha-glucosidase (alpha-d-glucoside glucohydrolase; EC 3.2.1.20) secreted by Geobacillus thermodenitrificans HRO10 were purified to homogeneity (13.6-fold; 11.5% yield and 25.4-fold; 32.0% yield, respectively) through a series of steps. The molecular weight of alpha-amylase was 58kDa, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The alpha-amylase activity on potato starch was optimal at pH 5.5 and 80 degrees Celsius. In the presence of Ca(2+), the alpha-amylase had residual activity of more than 92% after 1h of incubation at 70 degrees Celsius. The alpha-amylase did not lose any activity in the presence of phytate (a selective alpha-amylase inhibitor) at concentrations as high as 10mM, rather it retained 90% maximal activity after 1h of incubation at 70 degrees Celsius. EGTA and EDTA were strong inhibitory substances of the enzyme. The alpha-amylase hydrolyzed soluble starch at 80 degrees Celsius, with a K(m) of 3.05mgml(-1) and a V(max) of 7.35Uml(-1). The molecular weight of alpha-glucosidase was approximately 45kDa, as determined by SDS-PAGE. The enzyme activity was optimal at pH 6.5-7.5 and 55 degrees Celsius. Phytate did not inhibit G. thermodenitrificans HRO10 alpha-glucosidase activity, whereas pCMB was a potent inhibitor of the enzyme. The alpha-glucosidase exhibited Michaelis-Menten kinetics with maltose at 55 degrees Celsius (K(m): 17mM; V(max): 23micromolmin(-1)mg(-1)). Thin-layer chromatography studies with G. thermodenitrificans HRO10 alpha-amylase and alpha-glucosidase showed an excellent synergistic action and did not reveal any transglycosylation catalyzed reaction by the alpha-glucosidase.  相似文献   

15.
The design, synthesis and SAR of novel diarylthiophene derivatives were performed. These compounds were designed by structural hybridization of TNF-alpha production inhibitors bearing 4-fluorophenyl and 4-pyridyl groups such as FR133605, FR167653 and SB210313, and 6-acetyl-3-ethoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine (1) found previously by us. As a result, several compounds were more potent in vitro than FR133605 against TNF-alpha production stimulated with lipopolysaccharide (LPS).  相似文献   

16.
A most potent alpha-glucosidase inhibitor named salacinol has been isolated from an antidiabetic Ayurvedic traditional medicine, Salacia reticulata WIGHT, through bioassay-guided separation. The absolute stereostructure of salacinol was determined on the basis of chemical and physicochemical evidence, which included the alkaline degradation of salacinol to 1-deoxy-4-thio-D-arabinofuranose and the X-ray crystallographic analysis, to be the unique spiro-like configuration of the inner salt comprised of 1-deoxy-4-thio-D-arabinofuranosyl sulfonium cation and 1'-deoxy-D-erythrosyl-3'-sulfate anion. Salacinol showed potent inhibitory activities on several alpha-glucosidases, such as maltase, sucrase, and isomaltase, and the inhibitory effects on serum glucose levels in maltose- and sucrose-loaded rats (in vivo) were found to be more potent than that of acarbose, a commercial alpha-glucosidase inhibitor.  相似文献   

17.
2,6-Dideoxy-7-O-(beta-D-glucopyranosyl) 2,6-imino-D-glycero-L-gulo- heptitol (7-O-beta-D-glucopyranosyl-alpha-homonojirimycin, 1) was isolated from the 50% methanol extract of the whole plant of Lobelia sessilifolia (Campanulaceae), which was found to potently inhibit rice alpha-glucosidase. Adenophorae radix, roots of Adenophora spp. (Campanulaceae), yielded new homonojirimycin derivatives, adenophorine (2), 1-deoxyadenophorine (3), 5-deoxyadenophorine (4), 1-C-(5-amino-5-deoxy-beta-D-galactopyranosyl)butane (beta-1-C-butyl-deoxygalactonojirimycin, 5), and the 1-O-beta-D-glucosides of 2 (6) and 4 (7), in addition to the recently discovered alpha-1-C-ethylfagomine (8) and the known 1-deoxymannojirimycin (9) and 2R,5R-bis(hydroxymethyl)-3R,4R- dihydroxypyrrolidine (DMDP, 10). Compound 4 is a potent inhibitor of coffee bean alpha-galactosidase (IC50 = 6.4 microM) and a reasonably good inhibitor of bovine liver beta-galactosidase (IC50 = 34 microM). Compound 5 is a very specific and potent inhibitor of coffee bean alpha-galactosidase (IC50 = 0.71 microM). The glucosides 1 and 7 were potent inhibitors of various alpha-glucosidases, with IC50 values ranging from 1 to 0.1 microM. Furthermore, 1 potently inhibited porcine kidney trehalase (IC50 = 0.013 microM) but failed to inhibit alpha-galactosidase, whereas 7 was a potent inhibitor of alpha-galactosidase (IC50 = 1.7 microM) without trehalase inhibitory activity.  相似文献   

18.
Andrographolide (1), the cytotoxic agent of the plant Andrographis paniculata, was subjected to semi-synthetic studies leading to a series of new derivatives, a novel family of glucosidase inhibitors. Nicotination of 3,19-hydroxyls in 15-alkylidene andrographolide derivatives (9) was favorable to alpha-glucosidase inhibition activity. Among them, 15-p-chlorobenzylidene-14-deoxy-11,12-didehydro-3,19-dinicotinateandrographolide (11c) was a very potent inhibitor against alpha-glucosidase with an IC50 value of 6 microM. However, all compounds concerned for beta-glucosidase showed no inhibition. All compounds synthesized were characterized by the analysis of NMR, IR, HRMS spectra and the stereochemistry of 2 was confirmed by X-ray analysis.  相似文献   

19.
The bicyclic dihydropyrazolopyridinone scaffold allowed for incorporation of multiple P1 moieties with subnanomolar binding affinities for blood coagulation factor Xa. The compound 3-[6-(2'-dimethylaminomethyl-biphenyl-4-yl)-7-oxo-3-trifluoro-methyl-4,5,6,7-tetrahydro-pyrazolo[3,4-c]pyridine-l-yl]-benzamide 6d shows good fXa potency, selectivity, in vivo efficacy and oral bioavailability. Compound 6d was selected for further pre-clinical evaluations.  相似文献   

20.
The aim of the current work was the design and evaluation of etodolac controlled porosity osmotic pump (CPOP) tablets exhibiting zero-order release kinetics. Variables influencing the design of (1) core tablets viz., (a) osmogent type (sodium chloride, potassium chloride, mannitol, and fructose) and (b) drug/osmogent ratio (1:0.25, 1:0.50, and 1:0.75), and (2) CPOP tablets viz., (a) coating solution composition, (b) weight gain percentage (1–5%, w/w), and (c) pore former concentration (5%, 10%, and 20%, v/v), were investigated. Statistical analysis and kinetic modeling of drug release data were estimated. Fructose-containing core tablets showed significantly (P < 0.05) more retarded drug release rates. An inverse correlation was observed between drug/fructose ratio and drug release rate. Coating of the optimum core tablets (F4) with a mixture of cellulose acetate solution (3%, w/v), diethyl phthalate, and polyethylene glycol 400 (85:10:5, v/v, respectively) till a 4% w/w weight gain enabled zero-order sustained drug delivery over 24 h. Scanning electron microscopy micrographs of coating membrane confirmed pore formation upon contact with dissolution medium. When compared to the commercial immediate-release Napilac® capsules, the optimum CPOP tablets (F4–34) provided enhanced bioavailability and extended duration of effective etodolac plasma concentration with minimum expected potential for side effects in healthy volunteers.KEY WORDS: cellulose acetate, controlled porosity osmotic pump, etodolac, osmogent, zero order  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号