首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Further work on the subcellular localization of two lipid-degrading enzymes, lipolytic acyl hydrolase (LAH) and lipoxygenase (LOX) has been carried out on brassica florets, potato shoots and pea roots. In all cases, the LAH profile on sucrose and Ficoll density gradients was coincident with ‘lysosomal’ acid phosphatase activity. However, the localization of LOX activity was different for each tissue. In pea roots the activity of LOX was localized in the ‘lysosomal’ fraction, whereas with brassica florets (cauliflower and calabrese) it was present in a heavy body with a similar density to plastids and in potato shoots LOX gave only low particulate recoveries.  相似文献   

2.
Subcellular localization of enzymes of arginine metabolism in Saccharomyces cerevisiae was studied by partial fractionation and stepwise homogenization of spheroplast lysates. These enzymes could clearly be divided into two groups. The first group comprised the five enzymes of the acetylated compound cycle, i.e., acetylglutamate synthase, acetylglutamate kinase, acetylglutamyl-phosphate reductase, acetylornithine aminotransferase, and acetylornithine-glutamate acetyltransferase. These enzymes were exclusively particulate. Comparison with citrate synthase and cytochrome oxidase, and results from isopycnic gradient analysis, suggested that these enzymes were associated with the mitochondria. By contrast, enzymatic activities going from ornithine to arginine, i.e., arginine pathway-specific carbamoylphosphate synthetase, ornithine carbamoyltransferase, argininosuccinate synthetase, and argininosuccinate lyase, and the two first catabolic enzymes, arginase and ornithine aminotransferase, were in the "soluble" fraction of the cell.  相似文献   

3.
A role for Rab4 in the translocation of the glucose transporter Glut4 induced by insulin has been recently proposed. To study more directly the role of this small GTPase, freshly isolated adipocytes were transiently transfected with the cDNAs of both an epitope-tagged Glut4-myc and Rab4, a system which allows direct measurement of the concentration of Glut4 molecules at the cell surface. When cells were cotransfected with Glut4-myc and Rab4, the concentration of Glut4-myc at the cell surface decreased in parallel with the increased expression of Rab4, suggesting that Rab4 participates in the intracellular retention of Glut4. In parallel, the amount of Rab4 associated with the Glut4-containing vesicles increased. When Rab4 was moderately overexpressed, the number of Glut4-myc molecules recruited to the cell surface in response to insulin was similar to that observed in mock-transfected cells, and thus the insulin efficiency was increased. When Rab4 was expressed at a higher level, the amount of Glut4-myc present at the cell surface in response to insulin decreased. Since the overexpressed protein was predominantly cytosolic, this suggests that the cytosolic Rab4 might complex some factor(s) necessary for insulin action. This hypothesis was strengthened by the fact that Rab4 deltaCT, a Rab4 mutant lacking the geranylgeranylation sites, inhibited insulin-induced recruitement of Glut4-myc to the cell surface, even when moderately overexpressed. Rab3D was without effect on Glut4-myc subcellular distribution in basal or insulin-stimulated conditions. While two mutated proteins unable to bind GTP did not decrease the number of Glut4-myc molecules in basal or insulin-stimulated conditions at the plasma membrane, the behavior of a mutated Rab4 protein without GTPase activity was similar to that of the wild-type Rab4 protein, indicating that GTP binding but not its hydrolysis was required for the observed effects. Altogether, our results suggest that Rab4, but not Rab3D, participates in the molecular mechanism involved in the subcellular distribution of the Glut4 molecules both in basal and in insulin-stimulated conditions in adipocytes.  相似文献   

4.
The subcellular and intralobular distributions of a protein which specifically inhibits the proliferation of normal liver cells were determined in rat liver, using a combination of immunological and biochemical techniques. The IgG fraction from an antiserum raised against the hepatic proliferation inhibitor was isolated by protein A-Sepharose CL-4B chromatography and shown to be highly specific for the antigen using electroimmunodiffusion and affinity chromatography. To determine the intracellular location of the inhibitor, subcellular fractions were prepared from adult rat livers by differential centrifugation. The cytoplasmic fraction contained the biologically active cytostatic inhibitor, whereas the nuclear and mitochondrial fractions were inactive. Cytoplasmic localization of the hepatic proliferation inhibitor was further confirmed by anion exchange high performance liquid chromatography and by double immunodiffusion with the anti-hepatic proliferation inhibitor IgG. When liver sections were subjected to histochemical staining mediated through the immune IgG and an avidin-biotinylated horseradish peroxidase complex, the parenchymal liver cells were stained, but endothelial and connective tissue cells were not. Although some staining was evident throughout the liver parenchyma, the most intensely stained cells were located in the centrilobular region. Moreover, an age-dependent increase in the staining intensity and/or in the number of cells containing the proliferation inhibitor was observed. Preliminary experiments showed that little, if any, staining occurred in hepatocellular carcinoma cells. This highly specific IgG can be used to monitor alterations in the content and location of hepatic proliferation inhibitor in proliferative disorders of the liver.  相似文献   

5.
6.
The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.  相似文献   

7.
Candida tropicalis, a representative alkane- and higher fatty acid-utilizing yeast, can grow on propionate used as sole carbon and energy source. Initial pH of the medium markedly affected the growth of the yeast on propionate. In propionate-grown cells, several enzymes associated with peroxisomes and/or participating in propionate metabolism were induced in connection with the appearance of the characteristic peroxisomes. Acetate-grown cells of this yeast had only few peroxisomes, while alkane-grown cells contained conspicuous numbers of the organelles. As compared with alkane-grown cells, some specific features were observed in peroxisomes and enzymes associated with the organelles of propionate-grown cells: The shape of peroxisomes was large but the number was small; unlike localization of catalase in peroxisomes of alkane-grown cells, the enzyme of propionate-grown cells was mainly localized in cytoplasm; as for carnitine acetyltransferase localized almost equally in peroxisomes and mitochondria in alkane-grown cells, propionate-grown cells contained mainly the mitochondrial type enzyme. A propionate-activating enzyme, which was different from acetyl-CoA synthetase, was also induced in cytoplasm of propionate-grown cells. The role of carnitine acetyltransferase and the propionate-activating enzyme in propionate metabolism is discussed in comparison with the role of carnitine acetyltransferase and acetyl-CoA synthetase in acetate metabolism.  相似文献   

8.
9.
The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.  相似文献   

10.
11.
Summary Non-mycorrhizal plants grown 5 weeks in a low-phosphate soil with different amounts of soluble P were transplanted to soil also with different levels of phosphate and inoculated with VA mycorrhiza. The intensity of mycorrhizal infection as affected by the interaction of differents levels of phosphate in soil and in the host was examined after a further 8 weeks. In the soil with no added phosphate mycorrhizal infection was not affected by the initial P content of the plants. When 0.8 or 1.5 g K2PO4 was given per kg soil both the external and the internal P negatively influenced the infection. In some conditions a P content that was supraoptimal for infection was not for plant growth. The critical P concentration in plants depends on the age of the host. An interaction between P and N as a factor contributing to phosphate toxicity is discussed.  相似文献   

12.
Rabip4 is a Rab4 effector, which possesses a RUN domain, two coiled-coil domains, and a FYVE finger. It is associated with the early endosomes and leads, in concert with Rab4, to the enlargement of endosomes, resulting in the fusion of sorting and recycling endosomes. Our goal was to characterize the role of these various domains in Rabip4 subcellular localization and their function in Chinese hamster ovary cells. Although the FYVE finger domain specifically bound phosphatidylinositol 3-phosphate and was necessary for the function of Rabip4, it was not sufficient for the protein association with membranes. Indeed a protein containing the FYVE finger and the Rab4-binding site was cytosolic, whereas the total protein was mostly associated to the membrane fraction, whether or not cells were pretreated with wortmannin. By contrast, a construct corresponding to the N-terminal end, Rabip4-(1-212), and containing the RUN domain was membrane-associated. The complete protein partitioned between the Triton X-100-insoluble and -soluble fractions and a wortmannin treatment increased the amount of the protein in the Triton X-100 fraction. Rabip4-(1-212) was totally Triton X-100-insoluble, and confocal microscopic examination showed that it labeled not only the endosomes, positive for Rabip4, but also a filamentous network with a honeycomb appearance. The Triton X-100-insoluble fraction that contains Rabip4 did not correspond to the caveolin or glycosylphosphatidylinositol-enriched lipid rafts. Rabip4 did not appear directly linked to actin but seemed associated to the actin network. We propose that the subcellular localization of the protein is primarily driven by the RUN domain to endosomal microdomains characterized by Triton X-100 insolubility and that the FYVE domain and the Rab4-binding domain then allow for the recruitment of the protein to lipophilic microdomains enriched in phosphatidylinositol 3-phosphate.  相似文献   

13.
125I-insulin was shown to be internalized in vivo to a discrete population of low-density membranes (ligandosomes), distinct from the Golgi, endoplasmic reticulum, plasma membrane, and lysosomes. However, analytical subcellular fractionation shows that glutathione-insulin transhydrogenase is localized to the endoplasmic reticulum. Measurement of the specific enzyme activity of glutathione-insulin transhydrogenase showed no differences between normal, diabetic, and hyperinsulinaemic rats. These results suggest that glutathione-insulin transhydrogenase is not directly involved in the subceltular processing of receptor-bound internalized insulin.  相似文献   

14.
Insulin evokes diverse biological effects through receptor-mediated tyrosine phosphorylation of the insulin receptor substrate (IRS) proteins. Here, we show that, in vitro, the IRS-1, -2 and -3 pleckstrin homology (PH) domains bind with different specificities to the 3-phosphorylated phosphoinositides. In fact, the IRS-1 PH domain binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3), the IRS-2 PH domain to phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2), and the IRS-3 PH domain to phosphatidylinositol 3-phosphate. When expressed in NIH-IR fibroblasts and L6 myocytes, the IRS-1 and -2 PH domains tagged with green fluorescent protein (GFP) are localized exclusively in the cytoplasm. Stimulation with insulin causes a translocation of the GFP-IRS-1 and -2 PH domains to the plasma membrane within 3-5 min. This translocation is blocked by the phosphatidylinositol 3-kinase (PI 3-K) inhibitors, wortmannin and LY294002, suggesting that this event is PI 3-K dependent. Interestingly, platelet-derived growth factor (PDGF) did not induce translocation of the IRS-1 and -2 PH domains to the plasma membrane, indicating the existence of specificity for insulin. In contrast, the GFP-IRS-3 PH domain is constitutively localized to the plasma membrane. These results reveal a differential regulation of the IRS PH domains and a novel positive feedback loop in which PI 3-K functions as both an upstream regulator and a downstream effector of IRS-1 and -2 signaling.  相似文献   

15.
The activity of guanine deaminase (GAH, E.C. 3.5.4.3) was lower in rat cerebellum soluble and microsomal fractions than in rat brain subfractions. Adenosine deaminase (ADA, E.C. 3.5.4.4) activity was released in higher proportion than guanine deaminase, purine nucleoside phosphorylase (PNP, E.C. 2.1.2.4), 5-nucleotidase (5N, E.C. 3.1.3.5), and lactate (LDH, E.C. 1.1.1.27) and malate (MDH, E.C. 1.1.1.37) dehydrogenase in press-juices of rat brain. Furthermore, nerve ending-derived fractions (synaptosomes and synaptic vesicles) showed an enrichment of adenosine deaminase and also of 5-nucleotidase. The action of deoxycholate over the subfractions did not increase the activity of either enzyme. The contrary occurred with the remaining enzymes studied. Thus, it is possible that one set of enzymes are located on the surface of the particulate vesicles, whereas another set are located inside these vesicles, suggesting a compartmentation of purine catabolic enzymes in different areas of the central nervous system.  相似文献   

16.
Macrophages’ phenotypic and functional diversity depends on differentiating programs related to local environmental factors. Recent interest was deserved to the signal transduction pathways acting in macrophage polarization, including the phosphoinositide (PI) system and related phospholipase C (PLC) family of enzymes. The expression panel of PLCs and the subcellular localization differs in quiescent cells compared to the pathological counterpart. We analyzed the expression of PLC enzymes in unpolarized (M0), as well as in M1 and M2 macrophages to list the expressed isoforms and their subcellular localization. Furthermore, we investigated whether inflammatory stimulation modified the basal panel of PLCs’ expression and subcellular localization. All PLC enzymes were detected within both M1 and M2 cells, but not in M0 cells. M0, as well as M1 and M2 cells own a specific panel of expression, different for both genes’ mRNA expression and intracellular localization of PLC enzymes. The panel of PLC genes’ expression and PLC proteins’ presence slightly changes after inflammatory stimulation. PLC enzymes might play a complex role in macrophages during inflammation and probably also during polarization.  相似文献   

17.
Orotate phosphoribosyltransferase (OPRTase) and orotidylate decarboxylase (ODCase) have been found to be particulate in the kinetoplastid protozoan, Crithidia luciliae. Sucrose density centrifugation indicated that these two enzymes are associated with the glycosome, a microbody which appears to be unique to the Kinetoplastida and which contains many of the glycolytic enzymes. The particulate location of OPRTase and ODCase was considered to be favorable for channeling of orotidine-5'-monophosphate (OMP), the product of the first enzyme and substrate for the second. The degree of channeling was determined by double radioactively labeled experiments designed to determine the relative efficiency of endogenous and exogenous OMP as substrates of ODCase. The efficiency of channeling was high, with an approximate 50-fold preference for endogenous OMP. By comparison, the degree of channeling for the yeast enzymes, which are soluble and unassociated, was less than 2-fold. The OPRTase-ODCase enzyme complex was solubilized using Triton X-100 in the presence of dimethyl sulfoxide, glycerol, and phosphoribosyldiphosphate. The percentage recovery of the overall enzyme activity was approximately 20%. The degree of channeling was reduced by approximately 10-fold for the solubilized complex. The Km for OMP changed from 7.5 (+/- 1.8) to 1.6 (+/- 0.3) microM in the ODCase reaction. There was no alteration in the Km for orotate in the OPRTase reaction.  相似文献   

18.
Using electron microscopic immunocytochemistry with gold probes, we have studied the localization of acid alpha-glucosidase, N-acetyl-beta-hexosaminidase and beta-glucocerebrosidase in cultured skin fibroblasts from control subjects and patients with mucolipidosis II (I-cell disease). In control fibroblasts, a random distribution of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase within the lysosomes was observed, whereas beta-glucocerebrosidase was found to be localized on or near the lysosomal membrane. The observations confirm the soluble character of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase and the membrane-bound character of beta-glucocerebrosidase. In I-cell fibroblasts an abnormal localization of the two soluble enzymes was found. Labeling in lysosomes was very weak, but instead, small 'presumptive' vesicles containing both enzymes were detected throughout the cytoplasm and close to the plasma membrane. These vesicles could be involved in the secretion of the two enzymes. In contrast, a normal membrane-bound lysosomal localization was observed for beta-glucocerebrosidase. It is concluded that the intracellular transport of beta-glucocerebrosidase to the lysosomes can occur even when the mannose-6-phosphate recognition system is defective. This explains the normal activity of beta-glucocerebrosidase in I-cells in contrast to the deficiency of most other lysosomal enzymes.  相似文献   

19.
Osteoarthritis is characterized by the loss of aggrecan and collagen from the cartilage extracellular matrix. The proteinases responsible for the breakdown of cartilage aggrecan include ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). Post-translational inhibition of ADAMTS-4/-5 activity may be important for maintaining normal homeostasis of aggrecan metabolism, and thus, any disruption to this inhibition could lead to accelerated aggrecan breakdown. To date TIMP-3 (tissue inhibitor of matrix metalloproteinases-3) is the only endogenous inhibitor of ADAMTS-4/-5 that has been identified. In the present studies we identify alpha(2)-macroglobulin (alpha(2)M) as an additional endogenous inhibitor of ADAMTS-4 and ADAMTS-5. alpha(2)M inhibited the activity of both ADAMTS-4 and ADAMTS-5 in a concentration-dependent manner, demonstrating 1:1 stoichiometry with second-order rate constants on the order of 10(6) and 10(5) m(-1) s(-1), respectively. Inhibition of the aggrecanases was mediated by proteolysis of the bait region within alpha(2)M, resulting in physical entrapment of these proteinases. Both ADAMTS-4 and ADAMTS-5 cleaved alpha(2)M at Met(690)/Gly(691), representing a novel proteinase cleavage site within alpha(2)M and a novel site of cleavage for ADAMTS-4 and ADAMTS-5. Finally, the use of the anti-neoepitope antibodies to detect aggrecanase-generated alpha(2)M-fragments in synovial fluid was investigated and found to be uninformative.  相似文献   

20.
Flavonoids are increasingly being ingested by the general population as chemotherapeutic and anti-inflammatory agents. They are potentially toxic because of their conversion to free radicals and reactive quinones by peroxidases. Little detailed information is available on how flavonoids interact with myeloperoxidase, which is the predominant peroxidase present at sites of inflammation. This enzyme uses hydrogen peroxide to oxidize chloride to hypochlorous acid, as well as to produce an array of reactive free radicals from organic substrates. We investigated how the flavonoid myricitrin is oxidized by myeloperoxidase and how it affects the activities of this enzyme. Myricitrin was readily oxidized by myeloperoxidase in the presence of hydrogen peroxide. Its main oxidation product was a dimer that underwent further oxidation. In the presence of glutathione, myricitrin was oxidized to a hydroquinone that was conjugated to glutathione. When myeloperoxidase oxidized myricitrin and related flavonoids it became irreversibly inactivated. The number of hydroxyl groups in the B ring of the flavonoids and the presence of a free hydroxyl m-phenol group in the A ring were important for the inhibitory effects. Less enzyme inactivation occurred in the presence of chloride. Neutrophils also oxidized myricitrin to dimers in a reaction that was partially dependent on myeloperoxidase. Myricitrin did not affect the production of hypochlorous acid by neutrophils. We conclude that myricitrin will be oxidized by neutrophils at sites of inflammation to produce reactive free radicals and quinones. It is unlikely to affect hypochlorous acid production by neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号