首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kininogens are multifunctional proteins involved in a variety of regulatory processes including the kinin-formation cascade, blood coagulation, fibrynolysis, inhibition of cysteine proteinases etc. A working hypothesis of this work was that the properties of kininogens may be altered by oxidation of their methionine residues by reactive oxygen species that are released at the inflammatory foci during phagocytosis of pathogen particles by recruited neutrophil cells. Two methionine-specific oxidizing reagents, N-chlorosuccinimide (NCS) and chloramine-T (CT), were used to oxidize the high molecular mass (HK) and low molecular mass (LK) forms of human kininogen. A nearly complete conversion of methionine residues to methionine sulfoxide residues in the modified proteins was determined by amino acid analysis. Production of kinins from oxidized kininogens by plasma and tissue kallikreins was significantly lower (by at least 70%) than that from native kininogens. This quenching effect on kinin release could primarily be assigned to the modification of the critical Met-361 residue adjacent to the internal kinin sequence in kininogen. However, virtually no kinin could be formed by human plasma kallikrein from NCS-modified HK. This observation suggests involvement of other structural effects detrimental for kinin production. Indeed, NCS-oxidized HK was unable to bind (pre)kallikrein, probably due to the modification of methionine and/or tryptophan residues at the region on the kininogen molecule responsible for the (pro)enzyme binding. Tests on papain inhibition by native and oxidized kininogens indicated that the inhibitory activity of kininogens against cysteine proteinases is essentially insensitive to oxidation.  相似文献   

2.
Kinins are released from kininogens through the activation of the Hageman factor-prekallikrein system or by tissue kallikrein. These peptides exert various biological activities, such as vascular permeability increase, smooth muscle contraction, pain sensation and induction of hypotension. In many instances kinins are thought to be involved in the pathophysiology of various diseases. Recent studies have revealed that microbial and human cell proteinases activate Hageman factor and/or prekallikrein, or directly release kinin from kininogens. This review discusses the activation of the kinin-release system by mast-cell tryptase and microbial proteinases, including gingipains, which are cysteine proteinases from Porphyromonas gingivalis , the major pathogen of periodontal disease. Each enzyme is evaluated in the context of its association to allergy and infectious diseases, respectively. Furthermore, a novel system of kinin generation directly from kininogens by the concerted action of two proteinases is described. An interesting example of this system with implications to bacterial pathogenicity is the release of kinins from kininogens by neutrophil elastase and a synergistic action of cysteine proteinases from Staphylococcus aureus . This alternative production of kinins by proteinases present in diseased sites indicates a significant contribution of proteinases other than kallikreins in kinin generation. Therefore kinin receptor antagonists and proteinase inhibitors may be useful as therapeutic agents.  相似文献   

3.
Bradykinin-related peptides, kinins, ubiquitously occur in the nervous system and together with other pro-inflammatory mediators contribute to pathological states of that tissue such as edema and chronic pain. In the current work we characterized the kinin-forming system of neuronal cells obtained by differentiation of human neuroblastoma cell line IMR-32 with retinoic acid. These cells were shown to concentrate exogenous kinin precursors, kininogens, on the surface, release kinins from kininogens and subsequently convert kinins to their des-Arg metabolites. Significantly higher amounts of kinins and des-Arg-kinins were produced after cell stimulation with interferon-γ, a potent pro-inflammatory mediator involved in many neurological disorders. The expression of the major tissue kininogenase (the human kallikrein 1) and the major cell membrane-bound kininase (the carboxypeptidase M) also increased after cell stimulation with interferon-γ, suggesting the involvement of these enzymes in the kinin production and degradation, respectively. Interferon-γ was also able to up-regulate the expression of two known subtypes of kinin receptors. On the protein level, the changes were only observed in the expression of the des-Arg-kinin-specific type 1 receptor which functions in the propagation of the inflammatory state. Taken together, these results suggest a novel way for local kinin and des-Arg-kinin generation in the nervous tissue during pathological states accompanied by interferon-γ release.  相似文献   

4.
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.  相似文献   

5.
A new kinin moiety in human plasma kininogens   总被引:1,自引:0,他引:1  
Recently, we isolated a new kinin from human urine and tentatively identified it as [Ala3]-Lys-bradykinin. However, there were inconsistencies between the properties of the naturally occurring new kinin and synthetic [Ala3]-Lys-bradykinin. In the present work, we determined whether the new kinin was released from human plasma kininogen, and further investigated the structure of the new kinin. After incubation of plasma (n = 6) with human urinary kallikrein, kinins were separated by HPLC and measured by RIA. The new kinin and Lys-bradykinin were found representing 23 +/- 3 and 76 +/- 6%, respectively, of total kinins released (2.0 +/- 0.4 micrograms/ml). The new kinin was also released from both purified low- and high-molecular-weight kininogens, representing 40-42% of total kinins released. Amino acid sequencing and composition analysis indicated that the structure of the new kinin was [Hyp3]-Lys-bradykinin (Lys-Arg-Pro-Hyp-Gly-Phe-Ser-Pro-Phe-Arg) and not [Ala3]-Lys-bradykinin. We conclude that an important proportion of human kininogens contain hydroxyproline instead of proline in position three of the bradykinin moiety.  相似文献   

6.
Macrophages at an inflammatory site release massive amounts of proteolytic enzymes, including lysosomal cysteine proteases, which colocalize with their circulating, tight-binding inhibitors (cystatins, kininogens), so modifying the protease/antiprotease equilibrium in favor of enhanced proteolysis. We have explored the ability of human cathepsins B, K and L to participate in the production of kinins, using kininogens and synthetic peptides that mimic the insertion sites of bradykinin on human kininogens. Although both cathepsins processed high-molecular weight kininogen under stoichiometric conditions, only cathepsin L generated significant amounts of immunoreactive kinins. Cathepsin L exhibited higher specificity constants (kcat/Km) than tissue kallikrein (hK1), and similar Michaelis constants towards kininogen-derived synthetic substrates. A 20-mer peptide, whose sequence encompassed kininogen residues Ile376 to Ile393, released bradykinin (BK; 80%) and Lys-bradykinin (20%) when incubated with cathepsin L. By contrast, cathepsin K did not release any kinin, but a truncated kinin metabolite BK(5-9) [FSPFR(385-389)]. Accordingly cathepsin K rapidly produced BK(5-9) from bradykinin and Lys-bradykinin, and BK(5-8) from des-Arg9-bradykinin, by cleaving the Gly384-Phe385 bond. Data suggest that extracellular cysteine proteases may participate in the regulation of kinin levels at inflammatory sites, and clearly support that cathepsin K may act as a potent kininase.  相似文献   

7.
The protease/antiprotease balance is tipped in favor of enhanced proteolysis in inflammatory lung disorders, promoting the spread and severity of inflammation. Cysteine cathepsins participate in the remodeling and/or degradation of the pulmonary extra cellular matrix and in lung homeostasis. There is now good evidence that cathepsins are involved in fibrosis, emphysema, asthma, and in bronchopulmonary dysplasia. Kinins are inflammatory mediators that induce edema, pain and vasodilatation, and participate in vascular homeostasis. Kinins may also contribute to the immune system by acting as danger signals, and activating bradykinin receptors. Kinins are believed to play a role in inflammatory obstructive airway diseases, asthma, and allergic rhinitis. Their release by plasma and tissue kallikreins is severely reduced at inflammatory sites, although local kinin production seems to remain intact. Such conflicting observations suggest that there are alternative mechanisms of kinin metabolism besides the classical pathways. This article reviews the biological and pathophysiological roles of lung cysteine cathepsins, kinins and their receptors, and summarizes the indications that cysteine cathepsins may contribute to kinin liberation and/or degradation.  相似文献   

8.
Components of kinin-forming systems operating at inflammatory sites are likely to interact with elastase that is released by recruited neutrophils and may, at least temporarily, constitute the major proteolytic activity present at these sites. The aim of this work was to determine the effect of kininogen degradation by human neutrophil elastase (HNE) on kinin generation by tissue and plasma kallikreins. We show that the digestion of both low molecular mass (LK) and high molecular mass (HK) forms of human kininogen by HNE renders them essentially unsusceptible to processing by human urinary kallikrein (tissue-type) and also significantly quenches the kinin release from HK by plasma kallikrein. Studies with synthetic model heptadecapeptide substrates, ISLMKRPPGFSPFRSSR and SLMKRPPGFSPFRSSRI, confirmed the inability of tissue kallikrein to process peptides at either termini of the internal kinin sequence, while plasma kallikrein was shown to release the kinin C-terminus relatively easily. The HNE-generated fragments of kininogens were separated by HPLC and the fractions containing internal kinin sequences were identified by a kinin-specific immunoenzymatic test after trypsin digestion. These fractions were analyzed by electrospray-ionization mass spectrometry. In this way, multiple peptides containing the kinin sequence flanked by only a few amino acid residues at each terminus were identified in elastase digests of both LK and HK. These results suggest that elastase may be involved in quenching the kinin-release cascade at the late stages of the inflammatory reaction.  相似文献   

9.
During dermal injury and inflammation the serine proteases kallikreins cleave endogenous, multifunctional substrates (kininogens) to form bradykinin and kallidin. The actions of kinins are mediated by preferential binding to constitutively expressed kinin-B2 receptors or inducible kinin-B1 receptors. A feature of the kinin-B1 receptors is that they show low levels of expression, but are distinctly upregulated following tissue injury and inflammation. Because recent evidence suggested that kinin-B1 receptors may perform a protective role during inflammation, we investigated the specific occurrence of the kallikrein-kinin components in skin biopsies obtained from normal skin, patients undergoing surgery, basalioma, lichenificated atopic eczema, and psoriasis. The tissue was immunolabeled in order to determine the localisation of tissue pro-kallikrein, kallikrein, kininogen and kinin receptors. The kinin components were visualised in normal, diseased and traumatised skin, except that no labelling was observed for kininogen in normal skin. Of the five types of tissue examined, upregulation of kinin-B1 receptors was observed only in skin biopsies obtained following surgery. In essence, the expression of kinin-B1 receptors did not appear to be enhanced in the other biopsies. Within the multiple steps of the inflammatory cascade in wound healing, our results suggest an important regulatory role for kinin-B1 receptors during the first phase of inflammation following injury.  相似文献   

10.
Abstract Bradykinin-related peptides, universal mediators of inflammation collectively referred to as the kinins, are often produced in excessive amounts during microbial infections. We have recently shown that the yeast Candida albicans, the major fungal pathogen to humans, can exploit two mechanisms to enhance kinin levels at the sites of candidial infection, one depending on adsorption and activation of the endogenous kinin-generating system of the host on the fungal cell wall and the other relying on cleavage of kinin precursors, the kininogens, by pathogen-secreted proteases. This work aimed at assigning this kininogenase activity to the major secreted aspartic protease of C. albicans (SAP2). The purified SAP2 was shown to cleave human kininogens, preferably the low molecular mass form (LK) and optimally in an acidic environment (pH 3.5-4.0), and to produce two kinins, Met-Lys-bradykinin and its derivative, [Hydroxyproline3]-Met-Lys-bradykinin, both of which are capable of interacting with cellular bradykinin receptors of the B2 subtype. Additionally, albeit with a lower yield, des-Arg9-Met-Lys-bradykinin, an effective agonist of B1-subtype receptors, was released. The pathophysiological potential of these kinins and des-Arg-kinin was also proven by presenting their ability to stimulate human promonocytic cells U937 to release proinflammatory interleukin 1β (IL-1β) and IL-6.  相似文献   

11.
Traumatic shock was induced by the tourniquet method compressing one thigh during 10 hours. Venous blood samples were taken from control animals, as well as twice in the nervous phase of shock - after application and before removal of the tourniquet, and in the humoral-toxic phase - 1, 3 and 5 hours after tourniquet removal, in groups of 10 animals. Determinations included blood kinin level, and plasma kininogen level, and the activity of kallikreins and kininases in the plasma. It was found that during tourniquet shock a significant change occurred in the whole blood kinin system. Proportionally to the severity of shock the level of free kinins and kallikrein activity increased 3-4, times and the level of kininogen and the activity of kininases decreased, especially 3 hours after tourniquet removal.  相似文献   

12.
In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4–5), the kinin release yield was only 2–3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg9-bradykinin, the agonist of inflammation-inducible B1 receptors.  相似文献   

13.
The types of kinins released from purified native, single chain human high and low molecular mass kininogens (HMMKs and LMMKs, respectively) by purified human urinary kallikrein were separated by reverse-phase HPLC and quantitated by the rat uterus bioassay. [Hyp3]-lysyl-bradykinin, a recently discovered kinin, represented up to 58% of the biological activity released from 4 individual HMMK preparations purified from 4 different healthy volunteers. In contrast, the majority of the biological activity released from LMMKs purified from pooled plasma was identified as Lys-bradykinin and [Hyp3]-lysyl-bradykinin represented only 6.4 +/- 3.8%. These findings indicate posttranslation hydroxylation of human kininogens and suggest a preference of HMMKs for this modification.  相似文献   

14.
Tissue kallikreins are present in rat uterus during the estrous cycle in luminal and glandular epithelium, in early gestation in the implantation node, and in the last third of pregnancy surrounding the sinusoids in the decidua basalis. The pattern of kinin B2 receptor expression, through which the vasoactive effect of kallikreins is exerted, was studied by in vitro autoradiography and immunohistochemistry. The kinin B2 receptor was observed in the luminal and glandular epithelium, myometrium, endothelial cells of arteries, veins and venules, and smooth muscle cells of endometrial and myometrial arterioles. Immunoblotting of crude membranes revealed a band of 69 kDa that increased in late proestrus and estrus, concordantly with the pattern of immunostaining observed in the tissue. At Day 7 of gestation, the kinin B2 receptor was expressed (binding sites and receptor protein) in the epithelium of the implantation node and decidual cells; these latter cells showed a further increase during gestational Days 9 and 10. From Days 14 to 21, the subplacental decidua became strongly immunoreactive, and on Days 16 and 21 the placental labyrinthine endothelium was intensely stained. During this period, endothelium of arteries and veins, smooth muscular cells of small diameter arterioles, and myometrium also expressed B2 receptors. In unilaterally oil-stimulated pseudopregnancy, the decidual cells and the glandular epithelium show similar immunoreactivity to that during pregnancy. The temporospatial pattern of kinin B2 receptors, coinciding with that of kallikrein or with sites accessible to the generated kinins, further supports an autocrine-paracrine role for the kallikrein-kinin system in the vasoactive changes of implantation and placental blood flow regulation.  相似文献   

15.
The kallikrein-kinin system is activated during inflammation and plays a major role in the inflammatory process. One of the main mechanisms of kinin action includes the modulation of neutrophil function employing both receptors for kinins, B1 and B2. In this report we show by the use of B1 receptor-deficient mice that neutrophil migration in inflamed tissues is dependent on kinin B1 receptors. However, there is no change in circulating leukocyte number and composition after genetic ablation of this receptor. Furthermore, apoptosis of neutrophils necessary for the resolution of persistent inflammatory processes is impaired in mice lacking the B1 receptor. We also show that this receptor is expressed on neutrophils, thus it may be directly involved in the induction of apoptosis in these cells after prolonged activation at inflamed sites. In conclusion, our data show that the kinin B1 receptor modulates migration and the life span of neutrophils at sites of inflammation and may be therefore an important drug target in the therapy of inflammatory diseases.  相似文献   

16.
A kinin-directed monoclonal antibody to kininogens has been developed by the fusion of murine myeloma cells with mouse splenocytes immunized with bradykinin-conjugated hemocyanin. The hybrid cells were screened by an enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) for the secretion of antibodies to bradykinin. Ascitic fluids were produced and purified by a bradykinin-agarose affinity column. The monoclonal antibody (IgG1) bound to bradykinin, Lys-bradykinin, Met-Lys-bradykinin, and kininogens in ELISA. Further, this target-directed monoclonal antibody recognized purified low and high molecular weight bovine, human, or rat kininogens and T-kininogen in Western blotting. After turpentine-induced acute inflammation, rat kininogen levels increased dramatically in liver and serum as well as in the perfused pituitary, heart, lung, kidney, thymus, and other tissues, as identified by the kinin-directed kininogen antibody in Western blot analyses. The results were confirmed by measuring kinin equivalents of kininogens with a kinin RIA. During an induced inflammatory response, rat kininogens were localized immunohistochemically with the kinin-directed monoclonal antibody in parenchymal cells of liver, in acinar cells and some granular convoluted tubules of submandibular gland, and in the collecting tubules of kidney. Northern and cytoplasmic dot blot analyses using a kinin oligonucleotide probe showed that kininogen mRNA levels in liver but not in other tissues increase after turpentine-induced inflammation. The results indicated that rat kininogens are distributed in various tissues in addition to liver and only liver kininogen is induced by acute inflammation. The target-directed kininogen monoclonal antibody is a useful reagent for studying the structure, localization, and function of kininogens or any protein molecule containing the kinin moiety.  相似文献   

17.
We have previously reported that exogenous bradykinin activates immature dendritic cells (DCs) via the bradykinin B(2) receptor (B(2)R), thereby stimulating adaptive immunity. In this study, we show that these premises are met in a model of s.c. infection by Trypanosoma cruzi, a protozoan that liberates kinins from kininogens through its major protease, cruzipain. Intensity of B(2)R-dependent paw edema evoked by trypomastigotes correlated with levels of IL-12 produced by CD11c(+) dendritic cells isolated from draining lymph nodes. The IL-12 response induced by endogenously released kinins was vigorously increased in infected mice pretreated with inhibitors of angiotensin converting enzyme (ACE), a kinin-degrading metallopeptidase. Furthermore, these innate stimulatory effects were linked to B(2)R-dependent up-regulation of IFN-gamma production by Ag-specific T cells. Strikingly, the trypomastigotes failed to up-regulate type 1 immunity in TLR2(-/-) mice, irrespective of ACE inhibitor treatment. Analysis of the dynamics of inflammation revealed that TLR2 triggering by glycosylphosphatidylinositol-anchored mucins induces plasma extravasation, thereby favoring peripheral accumulation of kininogens in sites of infection. Further downstream, the parasites generate high levels of innate kinin signals in peripheral tissues through the activity of cruzipain. The demonstration that the deficient type 1 immune responses of TLR2(-/-) mice are rescued upon s.c. injection of exogenous kininogens, along with trypomastigotes, supports the notion that generation of kinin "danger" signals is intensified through cooperative activation of TLR2 and B(2)R. In summary, we have described a s.c. infection model where type 1 immunity is vigorously up-regulated by bradykinin, an innate signal whose levels in peripheral tissues are controlled by an intricate interplay of TLR2, B(2)R, and ACE.  相似文献   

18.
Bradykinin sequence analog receptor antagonists exhibit at their carboxyl termini features which contribute to the affinity of peptide inhibitors of glandular kallikreins. These features include a preference for L-Arg over L-Lys at position P1 and bulky D-amino acids at P3. There is minimal steric restriction at P2. Three representative receptor antagonists were examined for their capacity to inhibit the amidolytic activity of human urinary kallikrein (HUK). The Ki values for B4307 (DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DPhe-Thi-Arg), B4308 (Lys-Lys-Arg-Hyp-Hyp-Gly-Thi-Ser-DPhe-Thi-Arg), and B3852 (Arg-Pro-Hyp-Gly-Phe-Ser-DPhe-Phe-Arg) are 0.5, 0.3 and 2.5 microM, respectively. B4308 and B3852 were also shown to inhibit rat urinary kallikrein with Ki's of 1.0 and 5.5 microM. In the estrous rat uterus assay, 0.4 to 1.6 microM quantities of B4308 gave 5 to 10 times as much inhibition of contractile activity when added at the beginning of the incubation of HUK with human low molecular weight kininogen than when added upon addition of the mixture to the organ bath. These antagonists may inhibit the kallikrein-kinin system not only by blocking the binding of kinins to their receptor(s) but also by inhibiting the release of kinins from kininogens.  相似文献   

19.
ACE inhibitors elicit the release of endothelium-derived relaxing factors in perfused isolated canine arteries (Mombouli and Vanhoutte, J. Cardiovasc. Pharmacol. 1991, 18: 926-927); this action is antagonized by bradykinin-receptor antagonists suggesting that it is mediated by local kinin generation. The effects of exogenous tissular kallikrein (porcine) were examined in vitro in the isolated canine coronary artery. Isometric tension was measured in blood vessel rings (with and without endothelium) contracted with prostaglandin F2 alpha. The kallikrein elicited relaxations in rings with, but not in those without, endothelium. This response was augmented by the angiotensin converting enzyme inhibitor perindoprilat, and it was antagonized by the selective B2-kinin receptor antagonist HOE 140 and aprotinin, an inhibitor of tissular kallikrein. These data suggest that in the canine coronary artery, kallikrein causes relaxations that may be mediated by kinins generated from endogenous kininogens present in the vascular wall.  相似文献   

20.
Local generation of kinins in working skeletal muscle tissue in man   总被引:1,自引:0,他引:1  
The effect of standardized isometric forearm work on circulating and local kinin concentrations was investigated in 12 healthy volunteers using the forearm catheter technique. Radioimmunological kinin determination in arterial blood and in the venous effluent of forearm muscle tissue was performed using a modification of Shimamoto's technique of blood sampling and kinin extraction. Under basal conditions, there was no arterio-venous difference of kinins. Throughout the whole experiment, arterial--reflecting systemically circulating--kinins did not change. In muscle venous blood, immunoreactive kinins were not significantly elevated during work, whereas a marked increase was detected in the recovery period (5.0 +/- 0.6 vs. 10.2 +/- 2.0 pmol/l; p less than 0.01). The data demonstrate, that kinins are locally generated in calculated amounts (32.7 +/- 8.4 fmol/(100 g x min) that are known to be sufficient to induce local vasodilatory and metabolic effects at the site of muscle contraction, but below the threshold for systemic cardiovascular actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号