首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastric pathogen Helicobacter pylori (H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.  相似文献   

2.
The urokinase-type plasminogen activator receptor (uPAR) serves as a receptor for urokinase plasminogen activator (uPA) and plays a role in invasion and migration of certain immune cells, including NK cells. Although uPAR is anchored to the plasma membrane via a glycosylphosphatidylinositol lipid moiety, we have previously shown that uPAR crosslinking results in MAP kinase signaling and increased integrin expression on the surface of the human NK cell line, YT. We report, herein, that the binding of uPA to uPAR also activates the MAP kinase signaling cascade. Furthermore, we show the physical association between uPAR and integrins on YT cells using cocapping and fluorescence microscopy. These results suggest that signaling initiated by either uPAR binding to uPA or by uPAR clustering may depend on the physical association of uPAR with integrins, a process that may be a prerequisite for NK cell accumulation within established tumor metastases during adoptive therapy.  相似文献   

3.
Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol-anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K(+). Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1-occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.  相似文献   

4.
5.
Glioblastoma multiforme is an invasive primary brain tumor, which evades the current standard treatments. The invasion of glioblastoma cells into healthy brain tissue partly depends on the proteolytic and nonproteolytic activities of the plasminogen activator system proteins, including the urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1), and a receptor for uPA (uPAR). Here we show that sphingosine-1-phosphate (S1P) and the inflammatory mediator interleukin-1 (IL-1) increase the mRNA and protein expression of PAI-1 and uPAR and enhance the invasion of U373 glioblastoma cells. Although IL-1 enhanced the expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, down-regulation of SphK1 had no effect on the IL-1-induced uPAR or PAI-1 mRNA expression, suggesting that these actions of IL-1 are independent of S1P production. Indeed, the S1P-induced mRNA expression of uPAR and PAI-1 was blocked by the S1P(2) receptor antagonist JTE013 and by the down-regulation of S1P(2) using siRNA. Accordingly, the inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and Rho-kinase, two downstream signaling cascades activated by S1P(2), blocked the activation of PAI-1 and uPAR mRNA expression by S1P. More importantly, the attachment of glioblastoma cells was inhibited by the addition of exogenous PAI-1 or siRNA to uPAR, whereas the invasion of glioblastoma cells induced by S1P or IL-1 correlated with their ability to enhance the expression of PAI-1 and uPAR. Collectively, these results indicate that S1P and IL-1 activate distinct pathways leading to the mRNA and protein expression of PAI-1 and uPAR, which are important for glioblastoma invasiveness.  相似文献   

6.
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family and is closely related to LRP. It was discovered as a putative tumor suppressor and is frequently inactivated in lung cancer cells. In the present study, we used an LRP1B minireceptor (mLRP1B4), which mimics the function and trafficking of LRP1B, to explore the roles of LRP1B on the plasminogen activation system. We found that mLRP1B4 and urokinase plasminogen activator receptor (uPAR) form immunoprecipitable complexes on the cell surface in the presence of complexes of uPA and its inhibitor, plasminogen activator inhibitor type-1 (PAI-1). However, compared with cells expressing the analogous LRP minireceptor (mLRP4), cells expressing mLRP1B4 display a substantially slower rate of uPA.PAI-1 complex internalization. Expression of mLRP1B4, or an mLRP4 mutant deficient in endocytosis, leads to an accumulation of uPAR at the cell surface and increased cell-associated uPA and PAI-1 when compared with cells expressing mLRP4. In addition, we found that expression of mLRP1B or the mLRP4 endocytosis mutant impairs the regeneration of unoccupied uPAR on the cell surface and that this correlates with a diminished rate of cell migration. Taken together, these results demonstrate that LRP1B can function as a negative regulator of uPAR regeneration and cell migration.  相似文献   

7.
8.
Pancreatic ductal adenocarcinoma (PDAC) expresses high levels of urokinase-type plasminogen activator (uPA), its receptor (uPAR) and plasminogen activator inhibitor (PAI)-2, which may play an important role in PDAC progression. The overexpression of uPAR predicted short survival in PDAC patients. In this study, two different PDAC cell lines were used to examine the effect of small interfering (si) RNAs to uPAR, uPA and PAI-2 on proliferation, apoptosis, migration and MAP kinase activation. In both PDAC cell lines, siRNA to uPAR significantly inhibited cell proliferation and migration and stimulated apoptosis, to a greater extent than uPA siRNA. When either PDAC cell line was treated with uPAR siRNA, the level of phosphorylated ERK (p-ERK) decreased substantially, whereas phosphorylated p38 (p-p38) increased when compared to non-silencing control, uPA siRNA or PAI-2 siRNA treatment. This resulted in enhancement of the p-p38/p-ERK ratio which favors cancer cell arrest. Interestingly, uPAR protein expression was suppressed by p-ERK inhibition and stimulated with p-p38 inhibition, suggesting the presence of a positive feedback loop between uPAR and ERK. In summary, our data indicate that, of the uPA system, uPAR exerts the strongest effects on PDAC cells, by acting through the ERK signaling pathway via a positive feedback loop. Disruption of this loop with uPAR siRNA or inhibitor of p-ERK, inhibits PDAC proliferation and migration and promotes apoptosis. These findings suggest that uPAR strongly contributes to PDAC progression and may be considered as a potential anti-pancreatic cancer target.  相似文献   

9.
《The Journal of cell biology》1996,134(6):1563-1571
Induction of the urokinase type plasminogen activator receptor (uPAR) promotes cell adhesion through its interaction with vitronectin (VN) in the extracellular matrix, and facilitates cell migration and invasion by localizing uPA to the cell surface. We provide evidence that this balance between cell adhesion and cell detachment is governed by PA inhibitor-1 (PAI-1). First, we demonstrate that uPAR and PAI-1 bind to the same site in VN (i.e., the amino-terminal somatomedin B domain; SMB), and that PAI-1 competes with uPAR for binding to SMB. Domain swapping and mutagenesis studies indicate that the uPAR-binding sequence is located within the central region of the SMB domain, a region previously shown to contain the PAI-1-binding motif. Second, we show that PAI-1 dissociates bound VN from uPAR and detaches U937 cells from their VN substratum. This PAI-1 mediated release of cells from VN appears to occur independently of its ability to function as a protease inhibitor, and may help to explain why high PAI-1 levels indicate a poor prognosis for many cancers. Finally, we show that uPA can rapidly reverse this effect of PAI-1. Taken together, these results suggest a dynamic regulatory role for PAI-1 and uPA in uPAR-mediated cell adhesion and release.  相似文献   

10.
Urokinase-type (uPA) plasminogen activator is regulated by serine protease inhibitors (serpins), especially plasminogen activator inhibitor-1 (PAI-1). In many cancers, uPA and PAI-1 contribute to the invasive phenotype. We examined the in vitro migration and invasive capabilities of breast, ovarian, endometrial, and cervical cancer cell lines compared to their plasminogen activator system profiles. We then overexpressed active wild-type PAI-1 and an inactive "substrate" P14 form of PAI-1 (T333R) using stable transfection and adenoviral gene delivery. We also upregulated endogenous uPA and PAI-1 in these cells by treatment with transforming growth factor-beta. Some breast and ovarian cancer cell lines with natural expression of uPA, PAI-1, and urokinase receptor showed substantial migration and invasion compared to other cell lines that lack expression of these proteins. However, overexpression of active wild-type PAI-1, but not P14-PAI-1 (T333R), in these cell lines showed reduced migration and invasion. Since vitronectin binding by both forms of PAI-1 is equivalent, these results imply that PAI-1-vitronectin interactions are less critical in altering migration and invasion. Our results show that the in vitro migratory and invasive phenotype in these breast and ovarian cancer cell lines is reduced by active PAI-1 due to its ability to inhibit plasminogen activation.  相似文献   

11.
PAI-1 (plasminogen activator inhibitor-1) binds the urokinase-type plasminogen activator (uPA) and causes its degradation via its receptor uPAR and low-density lipoprotein receptor-related protein (LRP). While both uPA and PAI-1 are chemoattractants, we find that a preformed uPA-PAI-1 complex has no chemotactic activity and that PAI-1 inhibits uPA-induced chemotaxis. The inhibitory effect of PAI-1 on uPA-dependent chemotaxis is reversed when uPAR internalization is inhibited by the 39 kDa receptor-associated protein or by anti-LRP antibodies. Under the same conditions, the uPA-PAI-1 complex is turned into a chemoattractant causing cytoskeleton reorganization and extracellular-regulated kinase/mitogen-activated protein kinases activation. Thus, uPAR internalization by PAI-1 regulates cell migration.  相似文献   

12.
The role of the urokinase receptor (uPAR) in the internalization of the urokinase-plasminogen activator inhibitor type-1 (uPA.PAI-1) complex has been investigated. First, exploiting the species specificity of uPA binding, we show that mouse LB6 cells (that express a mouse uPAR) were unable to bind or degrade the human uPA.PAI-1 complex. On the other hand, LB6 clone 19 cells, which express a transfected human uPAR, degraded uPA.PAI-1 complexes with kinetics identical to the human monocytic U937 cells. We also show by immunofluorescence experiments with anti-uPA antibodies that in LB6 clone 19 cells, the uPA.PAI-1 complex is indeed internalized. While at 4 degrees C uPA fluorescence was visible at the cell surface, shift of the temperature to 37 degrees C caused a displacement of the immunoreactivity to the cytoplasmic compartment, with a pattern indicating lysosomal localization. If uPA.PAI-1 internalization/degradation is mediated by uPAR, inhibition of uPA.PAI-1 binding to uPAR should block degradation. Three different treatments, competition with the agonist amino-terminal fragment of uPA, treatment with a monoclonal antibody directed toward the binding domain of uPAR or release of uPAR from the cell surface with phosphatidylinositol-specific phospholipase C completely prevented uPA.PAI-1 degradation. The possibility that a serpin-enzyme complex receptor might be primarily or secondarily involved in the internalization process was excluded since a serpin-enzyme complex peptide failed to inhibit uPA.PAI-1 binding and degradation. Similarly, complexes of PAI-1 with low molecular mass uPA (33 kDa uPA), which lacks the uPAR binding domain, were neither bound nor degraded. Finally we also show that treatment of cells with uPA.PAI-1 complex caused a specific but partial down-regulation of uPAR. A similar result was obtained when PAI-1 was allowed to complex to uPA that had been previously bound to the receptor. The possibility therefore exists that the entire complex uPA.PAI-1-uPAR is internalized. All these data allow us to conclude that internalization of the uPA.PAI-1 complex is mediated by uPAR.  相似文献   

13.
14.
The urokinase‐type plasminogen activator (uPA) receptor (uPAR) focuses uPA proteolytic activity on the cell membrane, promoting localized degradation of extracellular matrix (ECM), and binds vitronectin (VN), mediating cell adhesion to the ECM. uPAR‐bound uPA and VN induce proteolysis‐independent intracellular signalling, regulating cell adhesion, migration, survival and proliferation. uPAR cross‐talks with CXCR4, the receptor for the stroma‐derived factor 1 chemokine. CXCR4 is crucial in the trafficking of hematopoietic stem cells from/to the bone marrow, which involves also uPAR. Both uPAR and CXCR4 are expressed in acute myeloid leukaemia (AML), with a lower expression in undifferentiated and myeloid subsets, and higher expression in myelomonocytic and promyelocytic subsets. We hypothesized a microRNA (miR)‐mediated co‐regulation of uPAR and CXCR4 expression, which could allow their cross‐talk at the cell surface. We identified three miRs, miR‐146a, miR‐335 and miR‐622, regulating the expression of both uPAR and CXCR4 in AML cell lines. Indeed, these miRs directly target the 3′untranslated region of both uPAR‐ and CXCR4‐mRNAs; accordingly, uPAR/CXCR4 expression is reduced by their overexpression in AML cells and increased by their specific inhibitors. Overexpression of all three miRs impairs migration, invasion and proliferation of myelomonocytic cells. Interestingly, we observed an inverse relationship between uPAR/CXCR4 expression and miR‐146a and miR‐335 levels in AML blasts, suggesting their possible role in the regulation of uPAR/CXCR4 expression also in vivo.  相似文献   

15.
Fibrinolytic factors have an important role in tumor progression through the degradation of extracellular matrix. The increased levels of urokinase-type plasminogen activator (uPA), uPA-receptor (uPAR) and type-1 PA inhibitor (PAI-1) are reported in human renal cell carcinoma (RCC). Connexin (Cx) gene, a member of gap junction, is known to act as a tumor suppressor gene. We have reported that Cx32 improves malignant phenotypes of metastatic RCC cells via the inhibition of Src-dependent signaling. In this study, we examined the effect of expression of Cx32 gene on the production of uPA, uPAR and PAI-1, and on the induction of PAI-1 stimulated by hypoxia in a human metastatic RCC cell line, Caki-1 cells. Cx32 expression decreased both mRNA level and production of PAI-1, uPA and uPAR in Caki-1 cells. Cx32 also decreased hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha mRNA level. PP1, a Src inhibitor, significantly decreased PAI-1, uPA, uPAR and HIF-alpha mRNA levels in Caki-1 cells. Furthermore, Cx32 suppressed the induction of HIF-2alpha protein in Caki-1 cells under hypoxia. PAI-1 mRNA level in Cx32-transfected Caki-1 cells was lower than that of mock transfectant under hypoxic conditions. These results suggest that Cx32 might reduce PAI-1, uPA and uPAR production in metastatic RCC cells via the inhibition of Src-dependent induction of HIF-1alpha and HIF-2alpha gene expression and that Cx32 might suppress hypoxia-inducible gene expression under hypoxic conditions.  相似文献   

16.
Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.  相似文献   

17.
The urokinase-type plasminogen activator system is a proteolytic system involved in tissue remodeling and cell migration. At the cell surface, receptor (uPAR)-bound urokinase (uPA) binds its inhibitor PAI-1, localized in the matrix, and the complex is internalized by endocytic receptors, such as the low-density lipoprotein receptor-related protein (LRP). We previously proposed a nonproteolytic role for the uPA system in human myogenic cell differentiation in vitro, i.e., cell fusion, and showed that myogenic cells can use PAI-1 as an adhesion matrix molecule. The aim of this study was to define the role of the uPA system in myogenic cell migration that is necessary for fusion. Using a two-dimensional motility assay and microcinematography, we showed that any interference with the [uPAR:uPA:PAI-1] complex formation, and interference with LRP binding to this complex, markedly decreased myogenic cell motility. This phenomenon was reversible and independent of plasmin activity. Inhibition of cell motility was associated with suppression of both filopodia and membrane ruffling activity. [uPAR:uPA:PAI-1:LRP] complex formation involves high-affinity molecular interactions and results in quick internalization of the complex. It is likely that this complex supports the membrane ruffling activity involved in the guidance of the migrating cell toward appropriate sites for attachment.  相似文献   

18.
Urokinase-type plasminogen activator (uPA) is a serine protease that is involved in cancer progression, especially invasion and metastasis including prostate cancer. uPA activation is mediated by transactivation of uPAR and epidermal growth factor receptor (EGF-R) in prostate cancer progression. Prostate cancer (PC-3) cells have highly invasive capacity and they express uPA and uPAR gene. PC-3 cells are treated with quercetin, which inhibits invasion and migration of PC-3 cells. Quercetin downregulates uPA, uPAR and EGF, EGF-R mRNA expressions. Quercetin inhibits cell survival factor β-catenin, NF-κB and also proliferative signalling molecules such as p-EGF-R, N-Ras, Raf-1, c.Fos c.Jun and p-c.Jun protein expressions. But quercetin increased p38 mitogen-activated protein kinase protein expression. Our results suggest that quercetin inhibit migration and invasion of prostate cancer cells. It shows the value for treatment of invasive and metastasis type of prostate cancer.  相似文献   

19.
The very low density lipoprotein receptor (VLDLr) binds diverse ligands, including urokinase-type plasminogen activator (uPA) and uPA-plasminogen activator inhibitor-1 (PAI-1) complex. In this study, we characterized the effects of the VLDLr on the internalization, catabolism, and function of the uPA receptor (uPAR) in MCF-7 and MDA-MB-435 breast cancer cells. When challenged with uPA.PAI-1 complex, MDA-MB-435 cells internalized uPAR; this process was inhibited by 80% when the activity of the VLDLr was neutralized with receptor-associated protein (RAP). To determine whether internalized uPAR is degraded, we studied the catabolism of [35S]methionine-labeled uPAR. In the absence of exogenous agents, the uPAR catabolism t(1)/(2) was 8.2 h. uPA.PAI-1 complex accelerated uPAR catabolism (t(1)/(2) to 1.8 h), while RAP inhibited uPAR catabolism in the presence (t(1)/(2) of 7.8 h) and absence (t(1)/(2) of 16.9 h) of uPA.PAI-1 complex, demonstrating a critical role for the VLDLr. When MCF-7 cells were cultured in RAP, cell surface uPAR levels increased gradually, reaching a new steady-state in 3 days. The amount of uPA which accumulated in the medium also increased. Culturing in RAP for 3 days increased MCF-7 cell motility by 2.2 +/- 0.1-fold and by 4.4 +/- 0.3-fold when 1.0 nM uPA was added. The effects of RAP on MCF-7 cell motility were entirely abrogated by an antibody which binds uPA and prevents uPA binding to uPAR. MCF-7 cells that were cultured in RAP demonstrated increased levels of activated mitogen-activated protein kinases. Furthermore, the MEK inhibitor, PD098059, decreased the motility of RAP-treated cells without affecting control cultures. These studies suggest a model in which the VLDLr regulates autocrine uPAR-initiated signaling and thereby regulates cellular motility.  相似文献   

20.
In recent years, classification of soft-tissue sarcomas (STS) has improved with cytogenetic analyses, but their clinical behavior is still not easily predictable. The aim of this study was to detect alterations in the urokinase-type plasminogen system, involved in tumor growth and invasion, by comparing mRNA levels of its components with those of paired normal tissues, and relating them with patient clinical course. Real-time PCR was performed on human STS cell lines and tissues from highly malignant STS, including leiomyosarcomas and malignant fibrous histiocytomas, to evaluate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of gene products was also performed. Median mRNA values of all genes studied were higher in tumors than in paired normal tissues. In agreement with data on STS cell lines, significant up-regulation for uPA and PAI-1 genes compared to reference values was seen. Moreover, different levels of expression were related to histotype and metastatic phenotype. There was accordance between uPA mRNA and protein expression, while immunodetection of PAI-1 product was weak and scattered. Clearly, the controversial role of PAI-1 protein requires further biological analyses, but evident involvement of uPA/PAI-1 gene overexpression in STS malignancy may highlight a molecular defect useful in discriminating STS high-risk patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号