首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non‐phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin‐driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium‐ and phospholipid‐binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS‐mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho‐family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.  相似文献   

2.
Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion.  相似文献   

3.
The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II-dependent contractility with consequent effects on growth cone motility.  相似文献   

4.
Actin polymerization is required for Chlamydia trachomatis entry into nonphagocytic host cells. Host and chlamydial actin nucleators are essential for internalization of chlamydiae by eukaryotic cells. The host cell Arp2/3 complex and the chlamydial translocated actin recruiting phosphoprotein (Tarp) are both required for entry. Tarp and the Arp2/3 complex exhibit unique actin polymerization kinetics individually, but the molecular details of how these two actin nucleators cooperate to promote bacterial entry is not understood. In this study we provide biochemical evidence that the two actin nucleators act synergistically by co-opting the unique attributes of each to enhance the dynamics of actin filament formation. This process is independent of Tarp phosphorylation. We further demonstrate that Tarp colocalization with actin filaments is independent of the Tarp phosphorylation domain. The results are consistent with a model in which chlamydial and host cell actin nucleators cooperate to increase the rate of actin filament formation.  相似文献   

5.
Type III secretion system-mediated injection of a cocktail of bacterial proteins drives actin rearrangements, frequently adopting the shape of prominent protuberances of ruffling membrane, and culminating in host cell invasion of Gram-negative pathogens like Salmonella typhimurium . Different Salmonella effectors are able to bind actin and activate Rho-family GTPases, which have previously been implicated in mediating actin-dependent Salmonella entry by interacting with N-WASP or WAVE-complex, well-established activators of the actin nucleation machine Arp2/3-complex. Using genetic deletion and RNA interference studies, we show here that neither individual nor collective removal of these Arp2/3- complex activators affected host cell invasion as efficiently as Arp2/3-complex knock-down, although the latter was also not essential. However, interference with WAVE-complex function abrogated Salmonella -induced membrane ruffling without significantly affecting entry efficiency, actin or Arp2/3-complex accumulation. In addition, scanning electron microscopy images captured entry events in the absence of prominent membrane ruffles. Finally, localization and RNA interference studies indicated a relevant function in Salmonella entry for the novel Arp2/3-complex regulator WASH. These data establish for the first time that Salmonella invasion is separable from bacteria-induced membrane ruffling, and uncover an additional Arp2/3-complex activator as well as an Arp2/3-complex-independent actin assembly activity that contribute to Salmonella invasion.  相似文献   

6.
The bacterial pathogen Salmonella penetrates the intestinal epithelium by inducing its own phagocytosis into epithelial cells. The dramatic reorganization of the actin cytoskeleton required for internalization is driven by bacterial manipulation of host signaling pathways, including activation of the Rho family GTPase Rac1 and subsequent activation of the Arp2/3 complex. However, the mechanisms linking these two events remain poorly understood. Rac1 is thought to promote activation of the Arp2/3 complex through its interaction with suppressor of cAMP receptor/WASP family verprolin-homologous (SCAR/WAVE) family proteins, but this interaction is apparently indirect. Two different Rac1 effectors have been shown to bind WAVE2: IRSp53, the SH3 domain of which binds the WAVE2 proline-rich domain, and PIR121/Sra-1, which forms a pentameric complex containing WAVE, Abi1, Nap1, and HSPC300. However, the extent to which each of these complexes contributes to Arp2/3 complex activation in the context of Salmonella infection is unclear. Here, we show that WAVE2 is necessary for efficient invasion of epithelial cells by Salmonella typhimurium. We found that although Salmonella infection strongly promotes the formation of an IRSp53/WAVE2 complex, IRSp53 is not necessary for bacterial internalization. In contrast, disruption of the PIR121/Nap1/Abi1/WAVE2/HSPC300 complex potently inhibits bacterial uptake. These results indicate that WAVE2 is an important component in signaling pathways leading to Salmonella invasion. Although infection leads to the formation of an IRSp53/WAVE2 complex, it is the association of WAVE2 with the Abi1/Nap1/PIR121/HSPC300 complex that regulates bacterial internalization.  相似文献   

7.
Salmonella enterica serovar Typhimurium (S. typhimurium) induces actin assembly both during invasion of host cells and during the course of intracellular bacterial replication. In this study, we investigated the involvement in these processes of host cell signalling pathways that are frequently utilized by bacterial pathogens to manipulate the eukaryotic actin cytoskeleton. We confirmed that Cdc42, Rac, and Arp3 are involved in S. typhimurium invasion of HeLa cells, and found that N-WASP and Scar/WAVE also play a role in this process. However, we found no evidence for the involvement of these proteins in actin assembly during intracellular replication. Cortactin was recruited by Salmonella during both invasion and intracellular replication. However, RNA interference directed against cortactin did not inhibit either invasion or intracellular actin assembly, although it resulted in increased cell spreading and a greater number of lamellipodia. We also found no role for either the GTPase dynamin or the formin family member mDia1 in actin assembly by intracellular bacteria. Collectively, these data provide evidence that signalling pathways leading to Arp2/3-dependent actin nucleation play an important role in S. typhimurium invasion, but are not involved in intracellular Salmonella-induced actin assembly, and suggest that actin assembly by intracellular S. typhimurium may proceed by a novel mechanism.  相似文献   

8.
Salmonella pathogenesis is dependent on its ability to invade and replicate within host cells. Following invasion the bacteria remain within a modified phagosome known as the Salmonella-containing vacuole (SCV), within which they will survive and replicate. Invasion and SCV biogenesis are dependent on two Type III secretion systems, T3SS1 and T3SS2, which are used to translocate distinct cohorts of bacterial effector proteins into the host cell. Elucidating the roles of individual effector proteins in SCV biogenesis has proven difficult but several distinct themes are now emerging and it is apparent that SCV biogenesis is an extremely dynamic process involving; extensive membrane remodeling, interactions with the endolysosomal pathway, actin rearrangements and microtubule-based movement and tubule extension.  相似文献   

9.
Invasive Salmonella trigger their own uptake into non-phagocytic eukaryotic cells by delivering virulence proteins that stimulate signaling pathways and remodel the actin cytoskeleton. It has recently emerged that Salmonella encodes two actin-binding proteins, SipC and SipA, which together efficiently nucleate actin polymerization and stabilize the resulting supramolecular filament architecture. Therefore, Salmonella might directly initiate actin polymerization independently of the cellular Arp2/3 complex early in the cell entry process. This is an unprecedented example of a direct intervention strategy to facilitate entry of a pathogen into a target cell. Here, we discuss the Salmonella actin-binding proteins and how they might function in combination with entry effectors that stimulate Rho GTPases. We propose that membrane-targeted bacterial effector proteins might trigger actin polymerization through diverse mechanisms during cell entry by bacterial pathogens.  相似文献   

10.
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.  相似文献   

11.
Salmonella typhimurium translocates effector proteins into host cells via the SPI1 type III secretion system to induce responses such as membrane ruffling and internalization by non-phagocytic cells. Activation of the host cellular RhoGTPase Cdc42 is thought to be a key event during internalization. The translocated Salmonella protein SopE is an activator for Cdc42. Because SopE is absent from most S. typhimurium strains it remains unclear whether all S. typhimurium strains rely on activation of Cdc42 to invade host cells. We have identified SopE2, a translocated effector protein common to all S. typhimurium strains. SopE2 is a guanine nucleotide exchange factor for Cdc42 and shows 69% sequence similarity to SopE. Analysis of S. typhimurium mutants demonstrated that SopE2 plays a role in recruitment of the actin-nucleating Arp2/3 complex to the membrane ruffles and in efficient host cell invasion. Transfection experiments showed that SopE2 is sufficient to activate host cellular Cdc42, to recruit the actin-nucleating Arp2/3 complex and to induce actin cytoskeletal rearrangements and internalization. In conclusion, as a result of SopE2 all S. typhimurium strains tested have the capacity to activate Cdc42 signalling inside host cells which is important to ensure efficient entry.  相似文献   

12.
Salmonella invade host cells using Type 3 secreted effectors, which modulate host cellular targets to promote actin rearrangements at the cell surface that drive bacterial uptake. The Arp2/3 complex contributes to Salmonella invasion but is not essential, indicating other actin regulatory factors are involved. Here, we show a novel role for FHOD1, a formin family member, in Salmonella invasion. FHOD1 and Arp2/3 occupy distinct microdomains at the invasion site and control distinct aspects of membrane protrusion formation. FHOD1 is phosphorylated during infection and this modification is required for promoting bacterial uptake by host cells. ROCK II, but not ROCK I, is recruited to the invasion site and is required for FHOD1 phosphorylation and for Salmonella invasion. Together, our studies revealan important phospho‐dependent FHOD1 actin polymerization pathway in Salmonella invasion.  相似文献   

13.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.  相似文献   

14.
Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.  相似文献   

15.
Shigella, the causative agent of bacillary dysentery in?humans, invades epithelial cells, using a type III secretory system (T3SS) to inject bacterial effectors into host cells and remodel the actin cytoskeleton. ATP released through connexin hemichanels on the epithelial membrane stimulates Shigella invasion and dissemination in epithelial cells. Here, we show that prior to contact with the cell body, Shigella is captured by nanometer-thin micropodial extensions (NMEs) at a distance from the cell surface, in a process involving the T3SS tip complex proteins and stimulated by ATP- and connexin-mediated signaling. Upon bacterial contact, NMEs retract, bringing bacteria in contact with the cell body, where invasion occurs. ATP stimulates Erk1/2 activation, which controls actin retrograde flow in NMEs and their retraction. These findings reveal previously unappreciated facets of interaction of an invasive bacterium with host cells and a prominent role for Erk1/2 in the control of filopodial dynamics.  相似文献   

16.
Classic cadherins function as adhesion-activated cell signaling receptors. On adhesive ligation, cadherins induce signaling cascades leading to actin cytoskeletal reorganization that is imperative for cadherin function. In particular, cadherin ligation activates actin assembly by the actin-related protein (Arp)2/3 complex, a process that critically affects the ability of cells to form and extend cadherin-based contacts. However, the signaling pathway(s) that activate Arp2/3 downstream of cadherin adhesion remain poorly understood. In this report we focused on the Rho family GTPases Rac and Cdc42, which can signal to Arp2/3. We found that homophilic engagement of E-cadherin simultaneously activates both Rac1 and Cdc42. However, by comparing the impact of dominant-negative Rac1 and Cdc42 mutants, we show that Rac1 is the dominant regulator of cadherin-directed actin assembly and homophilic contact formation. To pursue upstream elements of the Rac1 signaling pathway, we focused on the potential contribution of Tiam1 to cadherin-activated Rac signaling. We found that Tiam1 or the closely-related Tiam2/STEF1 was recruited to cell-cell contacts in an E-cadherin-dependent fashion. Moreover, a dominant-negative Tiam1 mutant perturbed cell spreading on cadherin-coated substrata. However, disruption of Tiam1 activity with dominant-negative mutants or RNA interference did not affect the ability of E-cadherin ligation to activate Rac1. We conclude that Rac1 critically influences cadherin-directed actin assembly as part of a signaling pathway independent of Tiam1. actin cytoskeleton; Cdc42; E-cadherin  相似文献   

17.
Actin polymerisation is thought to drive the movement of eukaryotic cells and some intracellular pathogens such as Listeria monocytogenes. The Listeria surface protein ActA synergises with recruited host proteins to induce actin polymerisation, propelling the bacterium through the host cytoplasm [1]. The Arp2/3 complex is one recruited host factor [2] [3]; it is also believed to regulate actin dynamics in lamellipodia [4] [5]. The Arp2/3 complex promotes actin filament nucleation in vitro, which is further enhanced by ActA [6] [7]. The Arp2/3 complex also interacts with members of the Wiskott-Aldrich syndrome protein (WASP) [8] family - Scar1 [9] [10] and WASP itself [11]. We interfered with the targeting of the Arp2/3 complex to Listeria by using carboxy-terminal fragments of Scar1 that bind the Arp2/3 complex [11]. These fragments completely blocked actin tail formation and motility of Listeria, both in mouse brain extract and in Ptk2 cells overexpressing Scar1 constructs. In both systems, Listeria could initiate actin cloud formation, but tail formation was blocked. Full motility in vitro was restored by adding purified Arp2/3 complex. We conclude that the Arp2/3 complex is a host-cell factor essential for the actin-based motility of L. monocytogenes, suggesting that it plays a pivotal role in regulating the actin cytoskeleton.  相似文献   

18.
The epithelial zonula adherens (ZA) is a specialized adhesive junction where actin dynamics and myosin-driven contractility coincide. The junctional cytoskeleton is enriched in myosin II, which generates contractile force to support junctional tension. It is also enriched in dynamic actin filaments, which are replenished by ongoing actin assembly. In this study we sought to pursue the relationship between actin assembly and junctional contractility. We demonstrate that WAVE2–Arp2/3 is a major nucleator of actin assembly at the ZA and likely acts in response to junctional Rac signaling. Furthermore, WAVE2–Arp2/3 is necessary for junctional integrity and contractile tension at the ZA. Maneuvers that disrupt the function of either WAVE2 or Arp2/3 reduced junctional tension and compromised the ability of cells to buffer side-to-side forces acting on the ZA. WAVE2–Arp2/3 disruption depleted junctions of both myosin IIA and IIB, suggesting that dynamic actin assembly may support junctional tension by facilitating the local recruitment of myosin.  相似文献   

19.
Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott-Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation.  相似文献   

20.
AlphaMbeta2 integrins mediate phagocytosis of opsonized particles in a process controlled by RhoA, Rho kinase, myosin II, Arp2/3, and actin polymerization. AlphaMbeta2, Rho, Arp2/3, and F-actin accumulate underneath bound particles; however, the mechanism regulating Rho function during alphaMbeta2-mediated phagocytosis is poorly understood. We report that the binding of C3bi-opsonized sheep red blood cells (RBCs) to alphaMbeta2 increases Rho-GTP, but not Rac-GTP, levels. Deletion of the cytoplasmic domain of beta2, but not of alphaM, abolished Rho recruitment and activation, as well as phagocytic uptake. Interestingly, a 16-amino acid (aa) region in the membrane-proximal half of the beta2 cytoplasmic domain was necessary for activating Rho. Three COOH-terminal residues (aa 758-760) were essential for beta2-induced accumulation of Rho at complement receptor 3 (CR3) phagosomes. Activation of Rho was necessary, but not sufficient, for its stable recruitment underneath bound particles or for uptake. However, recruitment of active Rho was sufficient for phagocytosis. Our data shed light on the mechanism of outside-in signaling, from ligated integrins to the activation of Rho GTPase signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号