共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Steven L. Kelly Susan Kenna Anna Arnoldi Diane E. Kelly 《FEMS microbiology letters》1994,115(2-3):219-222
Abstract The Saccharomyces cerevisiae strain XL16-5B exhibited a fungicidal response to treatment with ketoconazole. Cell death became apparent during prolonged treatment over 72 h following an initial period over 24 h where viable cells were found and limited cell division occurred. Sterol analysis showed some differences between XL16-5B and the strain XY729-5a, which had a fungistatic response to ketoconazole. In particular, the level of ergosterol was higher in XL16-5B and remained high during treatment. 相似文献
4.
5.
HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
The nature of oxidative damage to Saccharomyces cerevisiae caused by levels of HOCl that inhibit cell replication was explored with the intent of identifying the loci of lethal lesions. Functions of cytosolic enzymes and organelles that are highly sensitive to inactivation by HOCl, including aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the mitochondrion, were only marginally affected by exposure of the yeast to levels of HOCl that completely inhibited colony formation. Loss of function in membrane-localized proteins, including the hexose transporters and PMA1 H(+)-ATPase, which is the primary proton pump located within the S. cerevisiae plasma membrane, was also marginal and K(+) leak rates to the extracellular medium increased only slowly with exposure to increasing amounts of HOCl, indicating that the plasma membrane retained its intrinsic impermeability to ions and metabolites. Adenylate phosphorylation levels in fermenting yeast declined in parallel with viability; however, yeast grown on respiratory substrates maintained near-normal phosphorylation levels at HOCl doses several-fold greater than that required for killing. This overall pattern of cellular response to HOCl differs markedly from that previously reported for bacteria, which appear to be killed by inhibition of plasma membrane proteins involved in energy transduction. The absence of significant loss of function in critical oxidant-sensitive cellular components and retention of ATP-synthesizing capabilities in respiring yeast cells exposed to lethal levels of HOCl suggests that toxicity in this case may arise by programmed cell death. 相似文献
6.
Cytokine-dependent regulation of tissue inhibitors of metalloproteinases (TIMPs) expression provides an important mechanism for controlling the activity of matrix metalloproteinases. We present data indicating that during inflammatory processes TIMP-1 and TIMP-3 may be involved in the proteolytic remodeling of subendothelial basement membrane of the brain microvascular system, a key step during leukocyte migration into the brain perivascular tissue. In brain endothelial cells the expression of TIMP-1 is dramatically up-regulated by major proinflammatory cytokines, with the combination of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF alpha) exhibiting the strongest synergistic stimulation. Simultaneously, IL-1beta/TNF alpha almost completely blocks TIMP-3 expression. Both synergistic effects are dose-dependent within the concentration range 0.05-5 ng/ml of both cytokines and correlate with the expression of inducible nitric oxide synthase, an endothelial cell activation marker. Down-regulation of TIMP-3 expression is also detected in astrocytes treated with TNF alpha or IFN-gamma whereas oncostatin M as well as TNF alpha up-regulate TIMP-1 mRNA level. We propose that the cytokine-modified balance between TIMP-1 and TIMP-3 expression provides a potential mechanism involved in the regulation of microvascular basement membrane proteolysis. 相似文献
7.
Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity 总被引:60,自引:18,他引:60 下载免费PDF全文
The Saccharomyces cerevisiae CDC42 gene product is involved in the morphogenetic events of the cell division cycle; temperature-sensitive cdc42 mutants are unable to form buds and display delocalized cell-surface deposition at the restrictive temperature (Adams, A. E. M., D. I. Johnson, R. M. Longnecker, B. F. Sloat, and J. R. Pringle. 1990. J. Cell Biol. 111:131-142). To begin a molecular analysis of CDC42 function, we have isolated the CDC42 gene from a yeast genomic DNA library. The use of the cloned DNA to create a deletion of CDC42 confirmed that the gene is essential. Overexpression of CDC42 under control of the GAL10 promoter was not grossly deleterious to cell growth but did perturb the normal pattern of selection of budding sites. Determination of the DNA and predicted amino acid sequences of CDC42 revealed a high degree of similarity in amino acid sequence to the ras and rho (Madaule, P., R. Axel, and A. M. Myers. 1987. Proc. Natl. Acad. Sci. 84:779-783) families of gene products. The similarities to ras proteins (approximately 40% identical or related amino acids overall) were most pronounced in the regions that have been implicated in GTP binding and hydrolysis and in the COOH-terminal modifications leading to membrane association, suggesting that CDC42 function also involves these biochemical properties. The similarities to the rho proteins (approximately 60% identical or related amino acids overall) were more widely distributed through the coding region, suggesting more extensive similarities in as yet undefined biochemical properties and functions. 相似文献
8.
Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. 总被引:19,自引:0,他引:19 下载免费PDF全文
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle. 相似文献
9.
10.
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals. 相似文献
11.
12.
13.
14.
The occurrence of programmed cell death in unicellular organisms is a subject that arouses great interest of theoreticians and experimental scientists. Already found evolutionarily conserved genes and metabolic pathways confirmed its existence in yeast, protozoa and even bacteria. In the yeast Saccharomyces cerevisiae, at least three main types of death are distinguished: apoptosis, necrosis and autophagy. Their classification suggested by the Nomenclature Committee on Cell Death initially based on the morphological characteristics has now been extended to include the measurable biochemical characteristics. Several laboratory methods previously used to detect the types of cell death of higher eucaryotes and later developed and successfully used for the analysis of yeast cells are here critically reviewed. Their advantages and limitations are described. 相似文献
15.
Exposure of stationary phase cells of Saccharomyces cerevisiae to 10 mM HCl (pH approximately 2) resulted in cell death as a function of time (up to 6 h) with most (about 40%-65%) of the cells showing apoptotic features including chromatin condensation along the nuclear envelope, exposure of phosphatidylserine on the outer leaflet of cytoplasmic membrane, and DNA fragmentation. During the first 2 h of acid exposure there was an increase in reactive oxygen species (ROS) level inside cells, with subsequent elevation in the level of lipid peroxidation and decrease in reducing equivalents culminating in loss of mitochondrial membrane potential (DeltaPsi(m)). An initial (1 h) event of mitochondrial hyper-polarization with subsequent elevation of ROS level of the acid treated cells was also observed. S-adenosyl-l-methionine (AdoMet; 1 mM) treatment increased the cell survival of the acid stressed cells. It partially scavenged the increased intracellular ROS level by supplementing glutathione through the transsulfuration pathway. It also inhibited acid mediated lipid peroxidation, partially recovered acid evoked loss of DeltaPsi(m) and protected the cells from apoptotic cell death. S-adenosyl di-aldehyde, an indirect inhibitor of the AdoMet metabolic pathway, increased mortality of the acid treated cells. Incubation of acid stressed cells with the antioxidant, N-acetyl-cysteine (1 mM), decreased the cellular mortality, but the same concentration of AdoMet offered more protection by scavenging the free radicals. The ability of AdoMet to scavenge ROS mediated apoptosis may be an important function of this molecule in responding to cellular stress. The study could open a new avenue for detailed investigation on the curative potential of AdoMet against gastric ulcer. 相似文献
16.
Saccharomyces cerevisiae cell cycle 总被引:101,自引:0,他引:101
L H Hartwell 《Bacteriological reviews》1974,38(2):164-198
17.
18.
Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae 总被引:6,自引:0,他引:6
Selected antiapoptotic genes were expressed in baker's yeast (Saccharomyces cerevisiae) to evaluate cytoprotective effects during oxidative stress. When exposed to treatments resulting in the generation of reactive oxygen species (ROS), including H(2)O(2), menadione, or heat shock, wild-type yeast died and exhibited apoptotic-like characteristics, consistent with previous studies. Yeast strains were generated expressing nematode ced-9, human bcl-2, or chicken bcl-xl genes. These transformants tolerated a range of oxidative stresses, did not display features associated with apoptosis, and remained viable under conditions that were lethal to wild-type yeast. Yeast strains expressing a mutant antiapoptotic gene (bcl-2 deltaalpha 5-6), known to be nonfunctional in mammalian cells, were unable to tolerate any of the ROS-generating insults. These data are the first report showing CED-9 has cytoprotective effects against oxidative stress, and add CED-9 to the list of Bcl-2 protein family members that modulate ROS-mediated programmed cell death. In addition, these data indicate that Bcl-2 family members protect wild-type yeast from physiological stresses. Taken together, these data support the concept of the broad evolutionary conservation and functional similarity of the apoptotic processes in eukaryotic organisms. 相似文献
19.
Cisplatin is a highly effective chemotherapeutic drug used in the treatment of several tumors. It is a DNA-damaging agent that induces apoptosis of rapidly proliferating cells, an important factor underlying its therapeutic efficacy. Unfortunately, cellular resistance occurs often. A large fraction of tumor cells harbor mutations in p53, contributing to defects in apoptotic pathways and drug resistance. However, cisplatin-induced apoptosis can also occur in p53 deficient cells; thus, elucidation of the molecular mechanism involved will potentially yield new strategies to eliminate tumors that have defects in the p53 pathway. Most of the studies in this field have been conducted in cultured mammalian cells, not amenable to systematic genetic manipulation. Therefore, we aimed to establish a simplified model devoid of a p53 ortholog to study cisplatin-induced programmed cell death (PCD), using the yeast Saccharomyces cerevisiae.Our results indicate cisplatin induces an active form of cell death in yeast, as this process was partially dependent on de novo protein synthesis and did not lead to loss of membrane integrity. Cisplatin also increased DNA condensation and fragmentation/degradation, but no significant mitochondrial dysfunction other than partial fragmentation. Co-incubation with the proteasome inhibitor MG132 increased resistance to cisplatin and, accordingly, yeast strains deficient in proteasome activity were more resistant to cisplatin than wild-type strains. Proteasome inhibitors can sensitize tumor cells to cisplatin, but protect others from cisplatin-induced cell death. Our results indicate inhibition of the proteasome protects budding yeast from cisplatin-induced cell death and validate yeast as a model to study the role of the proteasome in cisplatin-induced PCD. Elucidation of this mechanism will aid in the development of new strategies to increase the efficacy of chemotherapy. 相似文献