首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ~50 μs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ~50 μs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 μs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.  相似文献   

2.
The role of the distal histidine in regulating ligand binding to adult human hemoglobin (HbA) was re-examined systematically by preparing His(E7) to Gly, Ala, Leu, Gln, Phe, and Trp mutants of both Hb subunits. Rate constants for O2, CO, and NO binding were measured using rapid mixing and laser photolysis experiments designed to minimize autoxidation of the unstable apolar E7 mutants. Replacing His(E7) with Gly, Ala, Leu, or Phe causes 20–500-fold increases in the rates of O2 dissociation from either Hb subunit, demonstrating unambiguously that the native His(E7) imidazole side chain forms a strong hydrogen bond with bound O2 in both the α and β chains (ΔGHis(E7)H-bond ≈ −8 kJ/mol). As the size of the E7 amino acid is increased from Gly to Phe, decreases in kO2′, kNO′, and calculated bimolecular rates of CO entry (kentry′) are observed. Replacing His(E7) with Trp causes further decreases in kO2′, kNO′, and kentry′ to 1–2 μm−1 s−1 in β subunits, whereas ligand rebinding to αTrp(E7) subunits after photolysis is markedly biphasic, with fast kO2′, kCO′, and kNO′ values ≈150 μm−1 s−1 and slow rate constants ≈0.1 to 1 μm−1 s−1. Rapid bimolecular rebinding to an open α subunit conformation occurs immediately after photolysis of the αTrp(E7) mutant at high ligand concentrations. However, at equilibrium the closed αTrp(E7) side chain inhibits the rate of ligand binding >200-fold. These data suggest strongly that the E7 side chain functions as a gate for ligand entry in both HbA subunits.  相似文献   

3.
Association and dissociation rate constants for O2, CO, and methyl isocyanide binding to native and distal pocket mutants of R state human hemoglobin were measured using ligand displacement and partial photolysis techniques. Individual rate constants for the alpha and beta subunits were resolved by comparisons between the kinetic behavior of the native and mutant proteins. His-E7 was replaced with Gly and Gln in both alpha and beta subunits and with Phe in beta subunits alone. In separate experiments Val-E11 was replaced with Ala, Leu, and Ile in each globin chain. The parameters describing ligand binding to R state alpha subunits are sensitive to the size and polarity of the amino acids at positions E7 and E11. The distal histidine in this subunit inhibits the bimolecular rate of binding of both O2 and CO, sterically hinders bound CO and methyl isocyanide, and stabilizes bound O2 by hydrogen bonding. The Val-E11 side chain in alpha chains also appears to be part of the kinetic barrier to O2 and CO binding since substitution with Ala causes approximately 10-fold increases in the association rate constants for the binding of these diatomic ligands. However, substitution of Val-E11 by Ile produces only small decreases in the rates of ligand binding to alpha subunits. For R state beta subunits, the bimolecular rates of O2 and CO binding are intrinsically large, approximately 2-5-fold greater than those for alpha subunits, and with the exception of Val-E11----Ile mutation, little affected by substitutions at either the E7 or E11 positions. For the beta Val-E11----Ile mutant the association rate and equilibrium constants for all three ligands decreased 10-50-fold. All of these results agree with Shaanan's conclusions that the distal pocket in liganded beta subunits is more open whereas in alpha subunits bound ligands are more sterically hindered by adjacent distal residues (Shaanan, B. (1983) J. Mol. Biol. 171, 31-59). In the case of O2 binding to alpha subunits, the unfavorable steric effects are compensated by the formation of a hydrogen bond between the nitrogen atom of His-E7 and bound dioxygen.  相似文献   

4.
The free volume in the active site of human HbA plays a crucial role in governing the bimolecular rates of O(2), CO, and NO binding, the fraction of geminate ligand recombination, and the rate of NO dioxygenation by the oxygenated complex. We have decreased the size of the distal pocket by mutating Leu(B10), Val(E11), and Leu(G8) to Phe and Trp and that of other more internal cavities by filling them with Xe at high gas pressures. Increasing the size of the B10 side chain reduces bimolecular rates of ligand binding nearly 5000-fold and inhibits CO geminate recombination due to both reduction of the capture volume in the distal pocket and direct steric hindrance of Fe-ligand bond formation. Phe and Trp(E11) mutations also cause a decrease in distal pocket volume but, at the same time, increase access to the Fe atom because of the loss of the γ2 CH(3) group of the native Val(E11) side chain. The net result of these E11 substitutions is a dramatic increase in the rate of geminate recombination because dissociated CO is sequestered close to the Fe atom and can rapidly rebind without steric resistance. However, the bimolecular rate constants for binding of ligand to the Phe and Trp(E11) mutants are decreased 5-30-fold, because of a smaller capture volume. Geminate and bimolecular kinetic parameters for Phe and Trp(G8) mutants are similar to those for the native HbA subunits because the aromatic rings at this position cause little change in distal pocket volume and because ligands do not move past this position into the globin interior of wild-type HbA subunits. The latter conclusion is verified by the observation that Xe binding to the α and β Hb subunits has little effect on either geminate or bimolecular ligand rebinding. All of these experimental results argue strongly against alternative ligand migration pathways that involve movements through the protein interior in HbA. Instead, ligands appear to enter through the His(E7) gate and are captured directly in the distal cavity.  相似文献   

5.
Two invariant tryptophan residues on the N-terminal extracellular region of the rat alpha1 subunit, Trp-69 and Trp-94, are critical for the assembly of the GABA(A) (gamma-aminobutyric acid, type A) receptor into a pentamer. These tryptophans are common not only to all GABA(A) receptor subunits, but also to all ligand-gated ion channel subunits. Converting each Trp residue to Phe and Gly by site-directed mutagenesis allowed us to study the role of these invariant tryptophan residues. Mutant alpha1 subunits, coexpressed with beta2 subunits in baculovirus-infected Sf9 cells, displayed high affinity binding to [(3)H]muscimol, a GABA site ligand, but no binding to [(35)S]t-butyl bicyclophosphorothionate, a ligand for the receptor-associated ion channel. Neither [(3)H]muscimol binding to intact cells nor immunostaining of nonpermeabilized cells gave evidence of surface expression of the receptor. When expressed with beta2 and gamma2 polypeptides, the mutant alpha1 polypeptides did not form [(3)H]flunitrazepam binding sites though wild-type alpha1 polypeptides did. The distribution of the mutant receptors on sucrose gradients suggests that the effects on ligand binding result from the inability of the mutant alpha1 subunits to form pentamers. We conclude that Trp-69 and Trp-94 participate in the formation of the interface between alpha and beta subunits, but not of the GABA binding site.  相似文献   

6.
The major pathway for O2 binding to mammalian myoglobins (Mb) and hemoglobins (Hb) involves transient upward movement of the distal histidine (His-64(E7)), allowing ligand capture in the distal pocket. The mini-globin from Cerebratulus lacteus (CerHb) appears to have an alternative pathway between the E and H helices that is made accessible by loss of the N-terminal A helix. To test this pathway, we examined the effects of changing the size of the E7 gate and closing the end of the apolar channel in CerHb by site-directed mutagenesis. Increasing the size of Gln-44(E7) from Ala to Trp causes variation of association (k'O2) and dissociation (kO2) rate coefficients, but the changes are not systematic. More significantly, the fractions (Fgem approximately 0.05-0.19) and rates (kgem approximately 50-100 micros(-1)) of geminate CO recombination in the Gln-44(E7) mutants are all similar. In contrast, blocking the entrance to the apolar channel by increasing the size of Ala-55(E18) to Phe and Trp causes the following: 1) both k'O2 and kO2 to decrease roughly 4-fold; 2) Fgem for CO to increase from approximately 0.05 to 0.45; and 3) kgem to decrease from approximately 80 to approximately 9 micros(-1), as ligands become trapped in the channel. Crystal structures and low temperature Fourier-transform infrared spectra of Phe-55 and Trp-55 CerHb confirm that the aromatic side chains block the channel entrance, with little effect on the distal pocket. These results provide unambiguous experimental proof that diatomic ligands can enter and exit a globin through an interior channel in preference to the more direct E7 pathway.  相似文献   

7.
The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO(2) crystals, but Leu-86(G12)Ala CerHbO(2), which has an increased tunnel volume, stably accommodates two discrete xenon atoms: one adjacent to Leu-86(G12) and another near Ala-55(E18). Molecular dynamics simulations of ligand migration in wt CerHb show a low energy pathway through the apolar tunnel when Leu or Ala, but not Phe or Trp, is present at the 86(G12) position. The addition of 10-15 atm of xenon to solutions of wt CerHbCO and L86A CerHbCO causes 2-3-fold increases in the fraction of geminate ligand recombination, indicating that the bound xenon blocks CO escape. This idea was confirmed by L86F and L86W mutations, which cause even larger increases in the fraction of geminate CO rebinding, 2-5-fold decreases in the bimolecular rate constants for ligand entry, and large increases in the computed energy barriers for ligand movement through the apolar tunnel. Both the addition of xenon to the L86A mutant and oxidation of wt CerHb heme iron cause the appearance of an out Gln-44(E7) conformer, in which the amide side chain points out toward the solvent and appears to lower the barrier for ligand escape through the E7 gate. However, the observed kinetics suggest little entry and escape (≤ 25%) through the E7 pathway, presumably because the in Gln-44(E7) conformer is thermodynamically favored.  相似文献   

8.
The extent of fluorescence quenching and that of phosphorescence quenching of Trp-15 and Trp-314 in alcohol dehydrogenase from horse liver as well as the intrinsic phosphorescence lifetime of Trp-314 in fluid solution have been utilized as structural probes of the macromolecule in binary and ternary complexes formed with coenzyme, analogous, and various substrate/inhibitors. Luminescence quenching by the coenzyme reveals that (1) while the reduced form quenches Trp emission exclusively from the fluorescent state, the oxidized form is very effective on the phosphorescent state as well and that (2) among the series of NADH binary and ternary complexes known by crystallographic studies to attain the closed form, distinct nicotinamide/indole geometrical arrangements are inferred from a variable degree of fluorescence quenching. Information of the dynamic structure of the coenzyme-binding domain derived from the phosphorescence lifetime of Trp-314 points out that within the series of closed NADH complexes there is considerable conformational heterogeneity. In solution, the variability in dynamical structure among the various protein complexes emphasizes that the closed/open forms identified by crystallographic studies are not two well-defined macrostates of the enzyme.  相似文献   

9.
The rates of the bimolecular CO rebinding to the oxygenase domains of inducible and neuronal NOS proteins (iNOSoxy and nNOSoxy, respectively) after photolytic dissociation have been determined by laser flash photolysis. The following mutants at the isoform-specific sites (murine iNOSoxy N115L and rat nNOSoxy L337N, L337F) have been constructed to investigate role of the residues in the CO ligand accessibilities of the NOS isoforms. These residues are in the NOS distal substrate access channel. The effect of the (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) cofactor and l-arginine (Arg) substrate on the rates of CO rebinding have also been assessed. Addition of l-Arg to the iNOSoxy N115L mutant results in much faster CO rebinding rates, compared to the wild type. The results indicate that modifications to the iNOS channel in which the hydrophilic residue N115 is replaced by leucine (to resemble its nNOS cognate) open the channel somewhat, thereby improving access to the axial heme ligand binding position. On the other hand, introduction of a hydrophilic residue (L337N) or a bulky rigid aromatic residue (L337F) in the nNOS isoform does not significantly affect the kinetics profile, suggesting that the geometry of the substrate access pocket is not greatly altered. The bimolecular CO rebinding rate data indicate that the opening of the substrate access channel in the iNOS N115L mutant may be due to more widespread structural alterations induced by the mutation.  相似文献   

10.
J Gallay  M Vincent  C Nicot  M Waks 《Biochemistry》1987,26(18):5738-5747
The tryptophan (Trp) rotational dynamics and the secondary structure of the peptide hormones adrenocorticotropin-(1-24) [ACTH(1-24)]--the fully active N-terminal fragment of adrenocorticotropin-(1-39)--and glucagon were studied in aqueous solutions and in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/isooctane, a system selected to mimic the membrane-water interface. In aqueous solutions, the total fluorescence intensity decays of their single Trp residue [Trp-9 and Trp-25 for ACTH(1-24) and glucagon, respectively] are multiexponential. This is also the case for ACTH(5-10), a fragment of the adrenocorticotropin "message" region. Time-resolved fluorescence anisotropy data evidence a high degree of rotational freedom of the single Trp residue. Transfer of these peptides from water to the aqueous core of reverse micelles induces severe restrictions of the Trp internal motion and of its local environment. The results indicate that the Trp-9 residue in ACTH(1-24 is maintained in the close neighborhood of the water-AOT molecular interface where the water molecules are strongly immobilized. By contrast, the Trp residues in ACTH(5-10) and glucagon are likely to be located closer to the center of the micellar aqueous core where the water molecules are in a more mobile state. Furthermore, the above location of Trp can be extended to the peptide chains themselves as evidenced by the overall correlation time values of the peptide-containing micelles. Nevertheless, in all peptides, the indole ring remains susceptible to oxidation by N-bromosuccinimide. Circular dichroism measurements evidence the induction in glucagon of alpha-helices remaining unaffected by the micellar water content. Conversely, beta-sheet structures are favored in ACTH(1-24) at low water-to-surfactant molar ratios (w0) but are disrupted by subsequent additions of water. These results are discussed in terms of the possible role of the micellar interfaces in selecting the preferred peptide dynamical conformation(s)  相似文献   

11.
This study addresses the mechanism of covalent aggregation of human Cu,Zn-superoxide dismutase (hSOD1WT) induced by bicarbonate (HCO3-)-mediated peroxidase activity. Higher molecular weight species (apparent dimers and trimers) of hSOD1WT were formed from incubation mixtures containing hSOD1WT, H2O2, and HCO3-. HCO3--dependent peroxidase activity and covalent aggregation of hSOD1WT were mimicked by UV photolysis of hSOD1-WT in the presence of a [Co(NH3)5CO3]+ complex that generates the carbonate radical anion (CO3.). Human SOD1WT has but one aromatic residue, a tryptophan residue (Trp-32) on the surface of the protein. Substitution of Trp-32 with phenylalanine produced a mutant (hSOD1W32F) that exhibits HCO3--dependent peroxidase activity similar to wild-type enzyme. However, unlike hSOD1WT, incubations containing hSOD1W32F,H2O2, and HCO3-did not result in covalent aggregation of SOD1. These findings indicate that Trp-32 is crucial for CO3.-induced covalent aggregation of hSOD1WT. Spin-trapping results revealed the formation of the Trp-32 radical from hSOD1WT, but not from hSOD1W32F. Spin traps also inhibited the covalent aggregation of hSOD1WT. Fluorescence experiments revealed that Trp-32 was further oxidized by CO3., forming kynurenine-type products in the presence of oxygen. Molecular oxygen was needed for HCO3-/H2O2-dependent aggregation of hSOD1WT, implicating a role for a Trp-32-dependent peroxidative reaction in the covalent aggregation of hSOD1WT. Taken together, these results indicate that Trp-32 oxidation is crucial for covalent aggregation of hSOD1. Implications of HCO3--dependent SOD1 peroxidase activity in amyotrophic lateral sclerosis disease are discussed.  相似文献   

12.
Using oligonucleotide-directed mutagenesis of the gene encoding the small subunit (rbcS) from Anacystis nidulans mutant enzymes have been generated with either Trp-54 of the small subunit replaced by a Phe residue, or with Trp-57 replaced by a Phe residue, whereas both Trp-54 and Trp-57 have been replaced by Phe residues in a double mutant. Trp-54 and Trp-57 are conserved in all amino acid sequences or the small subunit (S) that are known at present. The wild-type and mutant forms of Rubisco have all been purified to homogeneity. The wild-type enzyme, purified from Escherichia coli is indistinguishable from enzyme similarly purified from A. nidulans in subunit composition, subunit molecular mass and kinetic parameters (Vmax CO2 = 2.9 U/mg, Km CO2 = 155 microM). The single Trp mutants are indistinguishable from the wild-type enzyme by criteria (a) and (b). However, whereas, Km CO2 is also unchanged, Vmax CO2 is 2.5-fold smaller than the value for the wild-type enzyme for both mutants, demonstrating for the first time that single amino acid replacements in the non-catalytic small subunit influence the catalytic rate of the enzyme. The specificity factor tau, which measures the partitioning of the active site between the carboxylase and oxygenase reactions, was found to be invariant. Since tau is not affected by these mutations we conclude that S is an activating not a regulating subunit.  相似文献   

13.
The association kinetics of CO binding to site-directed mutants of human deoxyhemoglobin were measured by stopped-flow rapid mixing techniques at pH 7.0, 20 degrees C. Hemoglobin tetramers were constructed from one set of native subunits and one set of mutated partners containing His(E7) to Gly, Val(E11) to Ala, or Val(E11) to Ile substitutions. The reactivity of beta Cys93 with p-hydroxymercuribenzoate was measured to ensure that the mutant deoxyhemoglobins were capable of forming T-state quaternary conformations. Time courses for the complete binding of CO were measured by mixing the deoxygenated proteins with a 5-fold excess of ligand in the absence and presence of inositol hexaphosphate. Association rate constants for the individual alpha and beta subunits in the T-state conformation were assigned by measuring time courses for the reaction of a small, limiting amount of CO with a 20-fold excess of deoxyhemoglobin (i.e. Hb4 + CO----Hb4(CO)). The effects of the E7 and E11 mutations in T-state alpha subunits were qualitatively similar to those observed for the same subunit in the R-state (Mathews, A.J., Rohlfs, R.J., Olson, J.S., Tame, J., Renaud, J-P., and Nagai, K. (1989) J. Biol. Chem. 264, 16573-16583). The alpha His58(E7) to Gly and Val62(E11) to Ala substitutions caused 80- and 3-fold increases, respectively, in k'CO for T-state alpha subunits, and the alpha Val62(E11) to Ile mutation caused a 3-fold decrease. The beta His63(E7) to Gly and Val67(E11) to Ala substitutions produced 70- and 8-fold increases, respectively, in k'CO for T-state beta subunits whereas these same mutations caused little effect on the rate of CO binding to R-state beta subunits. The beta Val67(E11) to Ile mutation produced the same large effect, a 23-fold reduction in k'CO, in both quaternary conformations of beta subunits. These kinetic results can be interpreted qualitatively in terms of differences between the alpha and beta subunits in the deoxy and liganded crystal structures of human hemoglobin (Perutz, M.F. (1990) Annu. Rev. Physiol. 52, 1-25). Both the structural and functional data suggest that the distal portion of the beta heme pocket is tightly packed in deoxyhemoglobin whereas the CO binding site in R-state beta subunits is much more open. In contrast, the distal portion of the alpha heme pocket is restricted sterically in both quaternary states.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1-15N-L-Tryptophan (1-15N-L-Trp) was synthesized from 15N-aniline by a Sandmeyer reaction, followed by cyclization to isatin, reduction to indole with LiAlH4, and condensation of the 15N-indole with L-serine, catalyzed by tryptophan synthase. 1-15N-L-Trp was complexed with wild-type tryptophan synthase and beta-subunit mutants, betaK87T, betaD305A, and betaE109D, in the absence or presence of the allosteric ligands sodium chloride and disodium alpha-glycerophosphate. The enzyme complexes were observed by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance (15N-HSQC NMR) spectroscopy for the presence of 1-15N-L-Trp bound to the beta-active site. No 15N-HSQC signal was detected for 1-15N-L-Trp in 10 mm triethanolamine hydrochloride buffer at pH 8. 1-15N-L-Trp in the presence of wild-type tryptophan synthase in the absence or presence of 50 mm sodium chloride showed a cross peak at 10.25 ppm on the 1H axis and 129 ppm on the 15N axis as a result of reduced solvent exchange for the bound 1-15N-L-Trp, consistent with formation of a closed conformation of the active site. The addition of disodium alpha-glycerophosphate produced a signal twice as intense, suggesting that the equilibrium favors the closed conformation. 15N-HSQC NMR spectra of betaK87T and betaE109D mutant Trp synthase with 1-15N-L-Trp showed a similar cross peak either in the presence or absence of disodium alpha-glycerophosphate, indicating the preference for a closed conformation for these mutant proteins. In contrast, the betaD305A Trp synthase mutant only showed a 15N-HSQC signal in the presence of disodium alpha-glycerophosphate. Thus, this mutant Trp synthase favored an open conformation in the absence of disodium alpha-glycerophosphate but was able to form a closed conformation in the presence of disodium alpha-glycerophosphate. Our results demonstrate that the 15N-HSQC NMR spectra of 1-15N-L-Trp bound to Trp synthase can be used to determine the conformational state of mutant forms in solution rapidly. In contrast, UV-visible spectra of wild-type and mutant Trp synthase in the presence of L-Trp with NaCl and/or disodium alpha-glycerophosphate are more difficult to interpret in terms of altered conformational equilibria.  相似文献   

15.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA–βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.  相似文献   

16.
The stacking and hydrogen bonding abilities of Trp-(Gly)n-Glu (n = 0 approximately 3) for the interaction with 7-methylguanine (m7G) base were examined by fluorescence and 1H-NMR methods, and it was shown that they correlate with the distance between the Trp and Glu residues, and become most significant when both residues are separated from each other by two Gly residues (n = 2). Based on this insight, the sequence conserved between the human and yeast cap binding proteins (CBPs) was surveyed, and the sequence of Trp-Glu-Asp-Glu (No. 102-105 in human CBP) was selected as a probable site for the binding with mRNA cap structure. Thus, the stacking and hydrogen bonding abilities of Trp-Glu-Asp-Glu with m7G cap structure were examined by comparative experiments using its analogous peptides. The results showed that the fourth Glu residue is important not only for the construction of hydrogen bond pairing with m7G base but also for strengthening the stacking interaction between the Trp indole ring and m7G base. Taking account of the recognition analysis using the mutant CBP proteins by site-directed mutagenesis (Ueda, H., Iyo, H., Doi, M., Inoue, M., Ishida, T., Morioka, H., Tanaka, T., Nishikawa, S. and Uesugi, S. (1991) FEBS Lett. 280, 207-210), this cooperative interaction could be important for the recognition of mRNA cap structure.  相似文献   

17.
L H Zang  S Ghosh  A H Maki 《Biochemistry》1989,28(5):2245-2251
We have investigated perturbations of the triplet-state properties of Trp residues in bacteriophage T4 lysozyme caused by point mutations using low-temperature phosphorescence and optical detection of triplet-state magnetic resonance (ODMR) spectroscopy. Five temperature-sensitive mutants have been studied in detail. These include lysozymes with the point mutations Gln-105----Ala, Gln-105----Gly, Gln-105----Glu, Ala-146----Thr, and Trp-126----Gln. Changes in phosphorescence 0,0 band wavelength, intensity, the triplet-state zero-field splitting (ZFS), and the wavelength dependence of the ZFS were detected only from Trp-138 in each mutant. In the case of the Q105A mutation, the perturbations on Trp-138 have been ascribed to the combination of an increase in the polarizability of the environment and to the loss of hydrogen bonding of the enamine nitrogen of indole. For the Q105G mutation, we believe that Q is replaced by a solvent molecule in H bonding, leading to relatively small changes. In the Q105E mutation, the perturbation results largely from the introduction of a charged residue. In the case of the mutation A146T, the perturbation is associated with a local conformational change in which Trp-138 is shifted to a more solvent-exposed location. On the other hand, no significant spectroscopic changes in Trp-126 and Trp-158 were found in any of the mutants, suggesting that the perturbations are probably localized near Trp-138 for the mutations of positions 105 and 146. However, in the mutation W126Q, which occurs approximately 16 A away from Trp-138, significant changes of Trp-138 are detected, suggesting that the effects of this mutation are propagated over large distances.  相似文献   

18.
We have investigated the importance of dimerization of E-cadherin in the heterophilic adhesive interaction between E-cadherin and integrin alpha(E)beta(7). Dimerization of cadherin molecules in parallel alignment is known to be essential for homophilic adhesion and has been attributed to Ca(2+)-dependent interactions in the domain 1-2 junction or to cross-intercalation of Trp2 from one molecule to the other. We have disrupted either or both of these proposed mechanisms by point mutations in E-cadherin-Fc and have tested the modified proteins for alpha(E)beta(7)-mediated cell adhesion. Prevention of Trp2 intercalation had no adverse effect on integrin-mediated adhesion, whereas disruption of Ca(2+) binding permitted adhesion but with reduced efficiency. Both modifications in combination abolished recognition by alpha(E)beta(7). In EGTA, alpha(E)beta(7) adhered to wild type E-cadherin but not to the Trp2 deletion mutant. Independent evidence that the mutations prevented either or both mechanisms for dimerization is presented. The data show that dimerization is required for recognition by alpha(E)beta(7) and that it can take place by either of two mechanisms. Implications for the roles of the alpha(E) and beta(7) integrin subunits in ligand binding and for Trp2 and Ca(2+) in the assembly of cadherin complexes are discussed.  相似文献   

19.
Genes (uncB) for wild-type and mutant a subunits of Escherichia coli H+-ATPase (F0F1) were cloned into recombinant plasmids. The subunits were expressed under the control of a weak promoter of the unc operon at 30 degrees C and strong promoters of lambda phage at 42 degrees C. At 30 degrees C, the wild type and a truncated (Glu-269----end) a subunit complemented the defect of the a subunit mutant KF24A (Trp-111----end), whereas the other mutant subunits (Trp-111----end, Trp-231----end, Gln-252----end, and a subunit with a deletion of residues 21 to 227) did not. Three mutant subunits (Trp-231----end, Gln-252----end, and Glu-269----end) and the wild-type a subunit caused growth inhibition associated with cell elongation, an uneven distribution of membrane proteins, and an altered septum structure when they were expressed at 42 degrees C. These phenomena were not observed with the other mutant subunits, suggesting that overproduction of the middle region (between residues 111 and 230) of the a subunit causes growth inhibition.  相似文献   

20.
Creatininase is a binuclear zinc enzyme and catalyzes the reversible conversion of creatinine to creatine. It exhibits an open-closed conformational change upon substrate binding, and the differences in the conformations of Tyr121, Trp154, and the loop region containing Trp174 were evident in the enzyme-creatine complex when compared to those in the ligand-free enzyme. We have determined the crystal structure of the enzyme complexed with a 1-methylguanidine. All subunits in the complex existed as the closed form, and the binding mode of creatinine was estimated. Site-directed mutagenesis revealed that the hydrophobic residues that show conformational change upon substrate binding are important for the enzyme activity.We propose a catalytic mechanism of creatininase in which two water molecules have significant roles. The first molecule is a hydroxide ion (Wat1) that is bound as a bridge between the two metal ions and attacks the carbonyl carbon of the substrate. The second molecule is a water molecule (Wat2) that is bound to the carboxyl group of Glu122 and functions as a proton donor in catalysis. The activity of the E122Q mutant was very low and it was only partially restored by the addition of ZnCl2 or MnCl2. In the E122Q mutant, kcat is drastically decreased, indicating that Glu122 is important for catalysis. X-ray crystallographic study and the atomic absorption spectrometry analysis of the E122Q mutant-substrate complex revealed that the drastic decrease of the activity of the E122Q was caused by not only the loss of one Zn ion at the Metal1 site but also a critical function of Glu122, which most likely exists for a proton transfer step through Wat2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号