首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 4 P-type ATPases (P(4)-ATPases) catalyze phospholipid transport to generate phospholipid asymmetry across membranes of late secretory and endocytic compartments, but their kinship to cation-transporting P-type transporters raised doubts about whether P(4)-ATPases alone are sufficient to mediate flippase activity. P(4)-ATPases form heteromeric complexes with Cdc50 proteins. Studies of the enzymatic properties of purified P(4)-ATPase·Cdc50 complexes showed that catalytic activity depends on direct and specific interactions between Cdc50 subunit and transporter, whereas in vivo interaction assays suggested that the binding affinity for each other fluctuates during the transport reaction cycle. The structural determinants that govern this dynamic association remain to be established. Using domain swapping, site-directed, and random mutagenesis approaches, we here show that residues throughout the subunit contribute to forming the heterodimer. Moreover, we find that a precise conformation of the large ectodomain of Cdc50 proteins is crucial for the specificity and functionality to transporter/subunit interactions. We also identified two highly conserved disulfide bridges in the Cdc50 ectodomain. Functional analysis of cysteine mutants that disrupt these disulfide bridges revealed an inverse relationship between subunit binding and P(4)-ATPase-catalyzed phospholipid transport. Collectively, our data indicate that a dynamic association between subunit and transporter is crucial for the transport reaction cycle of the heterodimer.  相似文献   

2.
Members of the P(4) subfamily of P-type ATPases catalyze phospholipid transport and create membrane lipid asymmetry in late secretory and endocytic compartments. P-type ATPases usually pump small cations and the transport mechanism involved appears conserved throughout the family. How this mechanism is adapted to flip phospholipids remains to be established. P(4)-ATPases form heteromeric complexes with CDC50 proteins. Dissociation of the yeast P(4)-ATPase Drs2p from its binding partner Cdc50p disrupts catalytic activity (Lenoir, G., Williamson, P., Puts, C. F., and Holthuis, J. C. (2009) J. Biol. Chem. 284, 17956-17967), suggesting that CDC50 subunits play an intimate role in the mechanism of transport by P(4)-ATPases. The human genome encodes 14 P(4)-ATPases while only three human CDC50 homologues have been identified. This implies that each human CDC50 protein interacts with multiple P(4)-ATPases or, alternatively, that some human P(4)-ATPases function without a CDC50 binding partner. Here we show that human CDC50 proteins each bind multiple class-1 P(4)-ATPases, and that in all cases examined, association with a CDC50 subunit is required for P(4)-ATPase export from the ER. Moreover, we find that phosphorylation of the catalytically important Asp residue in human P(4)-ATPases ATP8B1 and ATP8B2 is critically dependent on their CDC50 subunit. These results indicate that CDC50 proteins are integral part of the P(4)-ATPase flippase machinery.  相似文献   

3.
The oxysterol binding protein homologue Kes1p has been implicated in nonvesicular sterol transport in Saccharomyces cerevisiae. Kes1p also represses formation of protein transport vesicles from the trans-Golgi network (TGN) through an unknown mechanism. Here, we show that potential phospholipid translocases in the Drs2/Dnf family (type IV P-type ATPases [P4-ATPases]) are downstream targets of Kes1p repression. Disruption of KES1 suppresses the cold-sensitive (cs) growth defect of drs2Δ, which correlates with an enhanced ability of Dnf P4-ATPases to functionally substitute for Drs2p. Loss of Kes1p also suppresses a drs2-ts allele in a strain deficient for Dnf P4-ATPases, suggesting that Kes1p antagonizes Drs2p activity in vivo. Indeed, Drs2-dependent phosphatidylserine translocase (flippase) activity is hyperactive in TGN membranes from kes1Δ cells and is potently attenuated by addition of recombinant Kes1p. Surprisingly, Drs2p also antagonizes Kes1p activity in vivo. Drs2p deficiency causes a markedly increased rate of cholesterol transport from the plasma membrane to the endoplasmic reticulum (ER) and redistribution of endogenous ergosterol to intracellular membranes, phenotypes that are Kes1p dependent. These data suggest a homeostatic feedback mechanism in which appropriately regulated flippase activity in the Golgi complex helps establish a plasma membrane phospholipid organization that resists sterol extraction by a sterol binding protein.  相似文献   

4.
Type IV P-type ATPases (P4-ATPases) are believed to translocate aminophospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. The yeast P4-ATPases, Drs2p and Dnf1p/Dnf2p, flip nitrobenzoxadiazole-labeled phosphatidylserine at the Golgi complex and nitrobenzoxadiazole-labeled phosphatidylcholine (PC) at the plasma membrane, respectively. However, the flippase activities and substrate specificities of mammalian P4-ATPases remain incompletely characterized. In this study, we established an assay for phospholipid flippase activities of plasma membrane-localized P4-ATPases using human cell lines stably expressing ATP8B1, ATP8B2, ATP11A, and ATP11C. We found that ATP11A and ATP11C have flippase activities toward phosphatidylserine and phosphatidylethanolamine but not PC or sphingomyelin. By contrast, ATPase-deficient mutants of ATP11A and ATP11C did not exhibit any flippase activity, indicating that these enzymes catalyze flipping in an ATPase-dependent manner. Furthermore, ATP8B1 and ATP8B2 exhibited preferential flippase activities toward PC. Some ATP8B1 mutants found in patients of progressive familial intrahepatic cholestasis type 1 (PFIC1), a severe liver disease caused by impaired bile flow, failed to translocate PC despite their delivery to the plasma membrane. Moreover, incorporation of PC mediated by ATP8B1 can be reversed by simultaneous expression of ABCB4, a PC floppase mutated in PFIC3 patients. Our findings elucidate the flippase activities and substrate specificities of plasma membrane-localized human P4-ATPases and suggest that phenotypes of some PFIC1 patients result from impairment of the PC flippase activity of ATP8B1.  相似文献   

5.
The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.  相似文献   

6.
Type IV P-type ATPases (P4-ATPases) are a large family of putative phospholipid translocases (flippases) implicated in the generation of phospholipid asymmetry in biological membranes. P4-ATPases are typically the largest P-type ATPase subgroup found in eukaryotic cells, with five members in Saccharomyces cerevisiae, six members in Caenorhabditis elegans, 12 members in Arabidopsis thaliana and 14 members in humans. In addition, many of the P4-ATPases require interaction with a noncatalytic subunit from the CDC50 gene family for their transport out of the endoplasmic reticulum (ER). Deficiency of a P4-ATPase (Atp8b1) causes liver disease in humans, and studies in a variety of model systems indicate that P4-ATPases play diverse and essential roles in membrane biogenesis. In addition to their proposed role in establishing and maintaining plasma membrane asymmetry, P4-ATPases are linked to vesicle-mediated protein transport in the exocytic and endocytic pathways. Recent studies have also suggested a role for P4-ATPases in the nonvesicular intracellular trafficking of sterols. Here, we discuss the physiological requirements for yeast P4-ATPases in phospholipid translocase activity, transport vesicle budding and ergosterol metabolism, with an emphasis on Drs2p and its noncatalytic subunit, Cdc50p.  相似文献   

7.
Asymmetrical distribution of phospholipids is generally observed in the eukaryotic plasma membrane. Maintenance and changes of this phospholipid asymmetry are regulated by ATP-driven phospholipid translocases. Accumulating evidence indicates that type 4 P-type ATPases (P4-ATPases, also called flippases) translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the plasma membrane and internal membranes. Among P-type ATPases, P4-ATPases are unique in that they are associated with a conserved membrane protein of the Cdc50 family as a non-catalytic subunit. Recent studies indicate that flippases are involved in various cellular functions, including transport vesicle formation and cell polarity. In this review, we will focus on the functional aspect of phospholipid flippases.  相似文献   

8.
Type IV P-type ATPases (P4-ATPases) and CDC50 family proteins form a putative phospholipid flippase complex that mediates the translocation of aminophospholipids such as phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the outer to inner leaflets of the plasma membrane. In Chinese hamster ovary (CHO) cells, at least eight members of P4-ATPases were identified, but only a single CDC50 family protein, CDC50A, was expressed. We demonstrated that CDC50A associated with and recruited P4-ATPase ATP8A1 to the plasma membrane. Overexpression of CDC50A induced extensive cell spreading and greatly enhanced cell migration. Depletion of either CDC50A or ATP8A1 caused a severe defect in the formation of membrane ruffles, thereby inhibiting cell migration. Analyses of phospholipid translocation at the plasma membrane revealed that the depletion of CDC50A inhibited the inward translocation of both PS and PE, whereas the depletion of ATP8A1 inhibited the translocation of PE but not that of PS, suggesting that the inward translocation of cell-surface PE is involved in cell migration. This hypothesis was further examined by using a PE-binding peptide and a mutant cell line with defective PE synthesis; either cell-surface immobilization of PE by the PE-binding peptide or reduction in the cell-surface content of PE inhibited the formation of membrane ruffles, causing a severe defect in cell migration. These results indicate that the phospholipid flippase complex of ATP8A1 and CDC50A plays a major role in cell migration and suggest that the flippase-mediated translocation of PE at the plasma membrane is involved in the formation of membrane ruffles to promote cell migration.  相似文献   

9.
Phosphatidylinositol 4-kinases (PI4Ks) regulate vesicle-mediated export from the Golgi apparatus via phosphatidylinositol 4-phosphate (PtdIns4P) binding effector proteins that control vesicle budding reactions and regulate membrane dynamics. Evidence has emerged from the characterization of Golgi PI4K effectors that vesicle budding and lipid dynamics are tightly coupled via a regulatory network that ensures that the appropriate membrane composition is established before a transport vesicle buds from the Golgi. An important hub of this network is protein kinase D, which regulates the activity of PI4K and several PtdIns4P effectors that control sphingolipid and sterol content of Golgi membranes. Other newly identified PtdIns4P effectors include Vps74/GOLPH3, a phospholipid flippase called Drs2 and Sec2, a Rab guanine nucleotide exchange factor (GEF). These effectors orchestrate membrane transformation events facilitating vesicle formation and targeting. In this review, we discuss how PtdIns4P signaling is integrated with membrane biosynthetic and vesicle budding machineries to potentially coordinate these crucial functions of the Golgi apparatus.  相似文献   

10.
Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.  相似文献   

11.
In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.  相似文献   

12.
The antitumor drug miltefosine has been recently approved as the first oral drug active against visceral leishmaniasis. We have previously identified the L. donovani miltefosine transporter (LdMT) as a P-type ATPase involved in phospholipid translocation at the plasma membrane of Leishmania parasites. Here we show that this protein is essential but not sufficient for the phospholipid translocation activity and, thus, for the potency of the drug. Based on recent findings in yeast, we have identified the putative beta subunit of LdMT, named LdRos3, as another protein factor required for the translocation activity. LdRos3 belongs to the CDC50/Lem3 family, proposed as likely beta subunits for P4-ATPases. The phenotype of LdRos3-defective parasites was identical to that of the LdMT-/-, including a defect in the uptake of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amino)-phosphatidylserine, generally considered as not affected in Lem3p-deficient yeast. Both LdMT and LdRos3 normally localized to the plasma membrane but were retained inside the endoplasmic reticulum in the absence of the other protein or when inactivating point mutations were introduced in LdMT. Modulating the expression levels of either protein independently, we show that any one of them could behave as the protein limiting the level of flippase activity. Thus, LdMT and LdRos3 seem to form part of the same translocation machinery that determines flippase activity and miltefosine sensitivity in Leishmania, further supporting the consideration of CDC50/Lem3 proteins as beta subunits required for the normal functioning of P4-ATPases.  相似文献   

13.
Type IV P-type ATPases (P4-ATPases) use the energy from ATP to “flip” phospholipid across a lipid bilayer, facilitating membrane trafficking events and maintaining the characteristic plasma membrane phospholipid asymmetry. Preferred translocation substrates for the budding yeast P4-ATPases Dnf1 and Dnf2 include lysophosphatidylcholine, lysophosphatidylethanolamine, derivatives of phosphatidylcholine and phosphatidylethanolamine containing a 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) group on the sn-2 C6 position, and were presumed to include phosphatidylcholine and phosphatidylethanolamine species with two intact acyl chains. We previously identified several mutations in Dnf1 transmembrane (TM) segments 1 through 4 that greatly enhance recognition and transport of NBD phosphatidylserine (NBD-PS). Here we show that most of these Dnf1 mutants cannot flip diacylated PS to the cytosolic leaflet to establish PS asymmetry. However, mutation of a highly conserved asparagine (Asn-550) in TM3 allowed Dnf1 to restore plasma membrane PS asymmetry in a strain deficient for the P4-ATPase Drs2, the primary PS flippase. Moreover, Dnf1 N550 mutants could replace the Drs2 requirement for growth at low temperature. A screen for additional Dnf1 mutants capable of replacing Drs2 function identified substitutions of TM1 and 2 residues, within a region called the exit gate, that permit recognition of dually acylated PS. These TM1, 2, and 3 residues coordinate with the “proline + 4” residue within TM4 to determine substrate preference at the exit gate. Moreover, residues from Atp8a1, a mammalian ortholog of Drs2, in these positions allow PS recognition by Dnf1. These studies indicate that Dnf1 poorly recognizes diacylated phospholipid and define key substitutions enabling recognition of endogenous PS.  相似文献   

14.
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN.  相似文献   

15.
Type IV P-type ATPases (P4-ATPases) are putative phospholipid flippases that translocate phospholipids from the exoplasmic (lumenal) to the cytoplasmic leaflet of lipid bilayers and are believed to function in complex with CDC50 proteins. In Saccharomyces cerevisiae, five P4-ATPases are localized to specific cellular compartments and are required for vesicle-mediated protein transport from these compartments, suggesting a role for phospholipid translocation in vesicular transport. The human genome encodes 14 P4-ATPases and three CDC50 proteins. However, the subcellular localization of human P4-ATPases and their interactions with CDC50 proteins are poorly understood. Here, we show that class 5 (ATP10A, ATP10B, and ATP10D) and class 6 (ATP11A, ATP11B, and ATP11C) P4-ATPases require CDC50 proteins, primarily CDC50A, for their exit from the endoplasmic reticulum (ER) and final subcellular localization. In contrast, class 2 P4-ATPases (ATP9A and ATP9B) are able to exit the ER in the absence of exogenous CDC50 expression: ATP9B, but not ATP11B, was able to exit the ER despite depletion of CDC50 proteins by RNAi. Although ATP9A and ATP9B show a high overall sequence similarity, ATP9A localizes to endosomes and the trans-Golgi network (TGN), whereas ATP9B localizes exclusively to the TGN. A chimeric ATP9 protein in which the N-terminal cytoplasmic region of ATP9A was replaced with the corresponding region of ATP9B was localized exclusively to the Golgi. These results indicate that ATP9B is able to exit the ER and localize to the TGN independently of CDC50 proteins and that this protein contains a Golgi localization signal in its N-terminal cytoplasmic region.  相似文献   

16.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

17.
Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

18.
Phospholipid translocation (flip-flop) across membrane bilayers is typically assessed via assays utilizing partially water-soluble phospholipid analogs as transport reporters. These assays have been used in previous work to show that phospholipid translocation in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum is facilitated by specific membrane proteins (flippases). To extend these studies to natural phospholipids while providing a framework to guide the purification of a flippase, we now describe an assay to measure the transbilayer translocation of dipalmitoylphosphatidylcholine, a membrane-embedded phospholipid, in proteoliposomes generated from detergent-solubilized rat liver endoplasmic reticulum. Translocation was assayed using phospholipase A(2) under conditions where the vesicles were determined to be intact. Phospholipase A(2) rapidly hydrolyzed phospholipids in the outer leaflet of liposomes and proteoliposomes with a half-time of approximately 0.1 min. However, for flippase-containing proteoliposomes, the initial rapid hydrolysis phase was followed by a slower phase reflecting flippase-mediated translocation of phospholipids from the inner to the outer leaflet. The amplitude of the slow phase was decreased in trypsin-treated proteoliposomes. The kinetic characteristics of the slow phase were used to assess the rate of transbilayer equilibration of phospholipids. For 250-nm diameter vesicles containing a single flippase, the half-time was 3.3 min. Proportionate reductions in equilibration half-time were observed for preparations with a higher average number of flippases/vesicle. Preliminary purification steps indicated that flippase activity could be enriched approximately 15-fold by sequential adsorption of the detergent extract onto anion and cation exchange resins.  相似文献   

19.
The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.  相似文献   

20.
Polar lipids must flip-flop rapidly across biological membranes to sustain cellular life [1, 2], but flipping is energetically costly [3] and its intrinsic rate is low. To overcome this problem, cells have membrane proteins that function as lipid transporters (flippases) to accelerate flipping to a physiologically relevant rate. Flippases that operate at the plasma membrane of eukaryotes, coupling ATP hydrolysis to unidirectional lipid flipping, have been defined at a molecular level [2]. On the other hand, ATP-independent bidirectional flippases that translocate lipids in biogenic compartments, e.g., the endoplasmic reticulum, and specialized membranes, e.g., photoreceptor discs [4, 5], have not been identified even though their activity has been recognized for more than 30 years [1]. Here, we demonstrate that opsin is the ATP-independent phospholipid flippase of photoreceptor discs. We show that reconstitution of opsin into large unilamellar vesicles promotes rapid (τ<10 s) flipping of phospholipid probes across the vesicle membrane. This is the first molecular identification of an ATP-independent phospholipid flippase in any system. It reveals an unexpected activity for opsin and, in conjunction with recently available structural information on this G protein-coupled receptor [6, 7], significantly advances our understanding of the mechanism of ATP-independent lipid flip-flop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号