首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HE3286, 17α-ethynyl-5-androstene-3β, 7β, 17β-triol, is a novel synthetic compound related to the endogenous sterol 5-androstene-3β, 7β, 17β-triol (β-AET), a metabolite of the abundant adrenal steroid dehydroepiandrosterone (DHEA). HE3286 has shown efficacy in clinical studies in impaired glucose tolerance and type 2 diabetes, and in vivo models of types 1 and 2 diabetes, autoimmunity, and inflammation. Proteomic analysis of solid-phase HE3286-bound bead affinity experiments, using extracts from RAW 264.7 mouse macrophage cells, identified 26 binding partners. Network analysis revealed associations of these HE3286 target proteins with nodes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for type 2 diabetes, insulin, adipokine, and adipocyte signaling. Binding partners included low density lipoprotein receptor-related protein (Lrp1), an endocytic receptor; mitogen activated protein kinases 1 and 3 (Mapk1, Mapk3), protein kinases involved in inflammation signaling pathways; ribosomal protein S6 kinase alpha-3 (Rsp6ka3), an intracellular regulatory protein; sirtuin-2 (Sirt2); and 17β-hydroxysteroid dehydrogenase 1 (Hsd17β4), a sterol metabolizing enzyme.  相似文献   

2.
5α-Androstane-3α, 16α 17β-triol was synthesized from 3β-hy-droxy-5-androsten-17-one. The procedure Involved catalytic hydrogenation of 3β-hydroxy-5-androsten-17-one to 3β-hydroxy-5α-androstan-17-one. This was followed by conversion of the 3β-hydroxy group to 3α-benzoyloxy group by the Mitsunobu reaction. Further treatment with isopropenyl acetate yielded 5α-androsten-16-ene-3α, 17-diol 3-benzoate 17-acetate. This was then converted to 3α, 17-dihydroxy-5α-androstan-16-one 3-benzoate 17-acetate via the unstable epoxide intermediate after treatment with m-cloroperoxybenzoic acid. LiAlH4 reduction of this compound formed 5α-androstane-3α, 16α, 17β-trlol. 1H and 13C NMR of various steroids are presented to confirm the structure of this compound.  相似文献   

3.
17alpha-ethinylestradiol (EE2), the active compound of the contraceptive pill, is a recalcitrant estrogen, which is encountered at ng/l levels in wastewater treatment plant (WWTP) effluents and rivers and can cause feminization of aquatic organisms. The aim of this study was to isolate micro-organisms that could remove such low EE2 concentrations. In this study, six bacterial strains were isolated from compost that cometabolize EE2 when metabolizing estrone (E1), 17beta-estradiol (E2) and estriol (E3). The strains belong to the alpha, beta and gamma-Proteobacteria. All six strains metabolize E2 over E1, at mug/l to ng/l concentrations. In 4 days, initial concentrations of 0.5 mug E2/l and 0.6 mug EE2/l were degraded to 1.8 +/- 0.4 ng E2/l and 85 +/- 16 ng EE2/l, respectively. No other metabolites besides E1, E2, E3 or EE2 were detected, suggesting that total degradation and cleavage of the aromatic ring occurred. This is the first study describing that bacteria able to metabolize E2, can subsequently cometabolize EE2 at low mug/l levels.  相似文献   

4.
17β-Nandrolone (17β-NT) is one of the most frequently misused anabolic steroids in meat producing animals. As a result of its extensive metabolism combined with the possibility of interferences with other endogenous compounds, detection of its illegal use often turns out to be a difficult issue. In recent years, proving the illegal administration of 17β-NT became even more challenging since the presence of endogenous presence of 17β-NT or some of its metabolite in different species was demonstrated. In bovines, 17α-NT can occur naturally in the urine of pregnant cows and recent findings reported that both forms can be detected in injured animals. Because efficient control must both take into account metabolic patterns and associated kinetics of elimination, the purpose of the present study was to investigate further some estranediols (5α-estrane-3β,17β-diol (abb), 5β-estrane-3α,17β-diol (bab), 5α-estrane-3β,17α-diol (aba), 5α-estrane-3α,17β-diol (aab) and 5β-estrane-3α,17α-diol (baa)) as particular metabolites of 17β-NT on a large number of injured (n=65) or pregnant (n=40) bovines. Whereas the metabolites abb, bab, aba and baa have previously been detected in urine up to several days after 17β-NT administration, the present study showed that some of the isomers abb (5α-estrane-3β,17β-diol) and bab (5β-estrane-3α,17β-diol) could not be detected in injured or pregnant animals, even at very low levels. This result may open a new way for the screening of anabolic steroid administration considering these 2 estranediols as biomarkers to indicate nandrolone abuse in cattle.  相似文献   

5.
A single thin layer chromatography and three antibodies were used for the specific radioimmunoassay of four androgens in pooled rat plasma (Sprague-Dawley adult males). The following values were found (pg/ml ± SD). Testosterone : 3, 138 ± 173; dihydrotestosterone : 374 ± 20; 5α-androstane-3α 17β-diol : 284 ± 24; 5α-androstane-3β, 17β-diol : 223 ± 11.  相似文献   

6.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

7.
Ahlem CN  White SK  Page TM  Frincke JM 《Steroids》2011,76(7):669-674
The potent anti-inflammatory activity of exogenous dehydroepiandrosterone (DHEA) in rodents has not translated to humans. This disparity in pharmacological effects has been attributed to factors such as differences in expression and function of molecular targets and differential metabolism. Hepatocytes from rats, dogs, monkeys, and humans were used to measure species-specific metabolism of a related compound, androst-5-ene-3β,17β-diol (5-AED) using reversed-phase radio-HPLC, to explore the metabolic contribution to this interspecies disparity. We found that rat hepatocytes transformed 5-AED predominantly into an array of highly oxidized metabolites. Canine metabolites overlapped with rat, but contained a greater abundance of less hydrophilic species. Monkey and human metabolites were strikingly less hydrophilic, dominated by 5-AED and DHEA conjugates. From the accumulating evidence indicating that the DHEA anti-inflammatory activity may actually reside in its more highly oxidized metabolites, we advance a hypothesis that the virtual absence of these metabolites in humans is central to the failure of exogenous DHEA to produce a potent pharmacological effect in clinical investigations. Accordingly, emulation of its anti-inflammatory activity in humans will require administration of an active native metabolite or a synthetic pharmaceutical derivative.  相似文献   

8.
Both the 5α, 6α- and 5β, 6β-dichloromethylene adducts (2a and 2b) of 3β-acetoxy-5-androsten-17-one (1) are produced when the latter is exposed to dichlorocarbene generated from chloroform and base by Phase Transfer Catalysis using ultrasound as a means of agitation. The 1H NMR substituent effects of 5α, 6α- and 5β, 6β-dichloromethylene on the angular methyl groups (Zürcher values) are given. The 13C NMR spectra for both compounds are presented and discussed.  相似文献   

9.
Androst-5-ene-3β,7β,17β-triol (βAET) is an anti-inflammatory metabolite of DHEA that is found naturally in humans, but in rodents only after exogenous DHEA administration. Unlike DHEA, C-7-oxidized DHEA metabolites cannot be metabolized into potent androgens or estrogens, and are not peroxisome proliferators in rodents. The objective of our current studies was to characterize the pharmacology of βAET to enable clinical trials in humans. The pharmacology of βAET was characterized by pharmacokinetics, drug metabolism, nuclear hormone receptor interactions, androgenicity, estrogenicity, and systemic toxicity studies. βAET's acute anti-inflammatory activity and immune modulating characteristics were measured in vitro in RAW264.7 cells and in vivo in murine models with parenteral administration. βAET was rapidly metabolized and cleared from circulation in mice and monkeys. βAET was weakly androgenic and estrogenic in immature rodents, but not bound by androgen, estrogen, progesterone, or glucocorticoid nuclear hormone receptors. βAET did not induce peroxisome proliferation, nor was it systemically toxic or trophic for sex hormone responsive tissues in mature rats and monkeys. βAET significantly attenuated acute inflammation both in vitro and in vivo, augmented immune responses in adult mice, and reversed immune senescence in aged mice. βAET may contribute to the anti-inflammatory activity in rodents attributed to DHEA. Unlike DHEA, βAET's anti-inflammatory activity cannot be ascribed to activation of PPARs, androgen, or estrogen nuclear hormone receptors. Exogenous βAET is unlikely to produce untoward toxicity or hormonal perturbations in humans.  相似文献   

10.
Structure 1 is proposed for the Inagami-Tamura endogenous digitalis-like factor (EDLF), and (14β,17α)-14-hydroxy- and (14β, 17α)-2,14-dihydroxyestradiols (2 and 3) were synthesized as models for studies on 1. The latter compound was remarkably potent in inducing a contractile response in isolated rat aorta and guinea pig left atrium.  相似文献   

11.
K.M. Pirke 《Steroids》1977,30(1):53-60
A reliable radioimmunoassay for the determination of 5-androstene-3β, 17β-diol in plasma is described. Antisera were obtained by immunization of rabbits with 3β,17β-dihydroxy-5-androsten-16-one coupled to bovine serum albumin in position 16. The antiserum was characterized by titer, affinity, and specificity. Only dehydroepi-androsterone (24.3 %) and pregnenolone (2.7 %) showed a small crossreactivity. The assay method consisted of extraction with ether, thin-layer chromatography and endpoint determination.The reliability of the method was studied. The interassay variability was 7.5 % at a concentration of 1.22 μg/l. The limit of detection was 0.068 μg/l. Specificity was achieved by Chromatographic separation of the crossreacting steroids. Mass recovery experiments with 250 and 500 pg were performed, in which 99.0 ± 4.6 % of the smaller and 97.6 ± 11.3 % of the greater mass were recovered. In 45 healthy adult males plasma concentrations between 0.44 and 1.80 μg/l were found. The median was 1.06 μg/l. Stimulation of the Leydig cells with human chorionic gonadotropin (HCG) increased plasma concentrations by 93 % (average in 12 males). Therapeutic castration in 8 men caused an average decrease of 55.4 % in plasma values.  相似文献   

12.
Anordrin, an antifertility agent that is an antiestrogen with weak estrogenic activity, has been studied to further characterize its hormonal activities. A dose of 2.0 μg/mouse·day for 7 days did not increase the uterine content of protein, but it did inhibit to a small extent the effect of administered estradiol-17β on uterine protein content and more significantly the effect of estradiol-17β on the uterine content of progesterone receptors. Anordrin also decreased serum corticosteroid-binding globulin levels. Administration of an average daily dose of 160 μg/day of anordrin to intact male mice had no effect on weights of kidney, testis, or seminal vesicle after 10 days, but seminal vesicle weight was significantly decreased after 30 days at a slightly lower dose. Similarly, anordrin inhibited the increase in seminal vesicle weight induced by testosterone propionate treatment of castrated mice. In female mice anordrin failed to maintain deciduomata and blocked the ability of progesterone (2.0 mg/mouse·day) to do so. However, anordrin did not compete with the androgen [3H]R1881 for binding in kidney cytosol or with the progestin [3H]R5020 for uterine receptor sites. Anordrin also did not compete with [3H]corticosterone for binding to serum proteins.  相似文献   

13.
17β-羟基类固醇脱氢酶   总被引:1,自引:0,他引:1  
17β-羟基类固醇脱氢酶(17β HSD)为性激素合成中最后步骤的酶,催化氧化或还原反应,其作用是在受体前调节性激素的局部水平。各型17β HSD在体内有其特有的区域性分布,分布的特点与各自的功能有着密切的关系。17β HSD结构和功能的异常与一些疾病,如肿瘤、假两性等的发生有密切关系。  相似文献   

14.
5-Androstene-3β,7β,17β-triol (β-AET), an active metabolite of dehydroepiandrosterone (DHEA), reversed glucocorticoid (GC)-induced suppression of IL-6, IL-8 and osteoprotegerin production by human osteoblast-like MG-63 cells and promoted osteoblast differentiation of human mesenchymal stem cells (MSCs). In a murine thermal injury model that includes glucocorticoid-induced osteopenia, β-AET significantly (p<0.05) preserved bone mineral content, restored whole body bone mineral content and endochondral growth, suggesting reversal of GC-mediated decreases in chondrocyte proliferation, maturation and osteogenesis in the growth plate. In men and women, levels of β-AET decline with age, consistent with a role for β-AET relevant to diseases associated with aging. β-AET, related compounds or synthetic derivatives may be part of effective therapeutic strategies to accelerate tissue regeneration and prevent or treat diseases associated with aging such as osteoporosis.  相似文献   

15.
Estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) discharged from sewage treatment plants (STPs) into surface waters, are seen as a threat effecting aquatic life by its estrogenic character. Therefore, much research is conducted on the fate and removal of these compounds. Since these compounds are present in influents and effluents in the ng/l range, methods for detection deserve special attention. Most important processes that play a role in the removal of estrogens are: adsorption, aerobic degradation, anaerobic degradation, anoxic biodegradation and photolytic degradation. Halflifes tend to vary and are remarkably shorter when low initial concentrations are applied. In general anaerobic conditions result in longer halflifes then aerobic conditions. EE2 shows far most persistence of the compounds, thereby also the estrogenic effect in vitro is about 2–3-fold higher compared to E2. The three compounds show a higher affinity to sorb to sludge compared to other tested adsorption materials like sediment. Aerobic degradation is far the most efficient in removing these compounds, but adsorption seems to play a significant role in retaining the estrogens inside full-scale STPs. Removal rates in full scale plants depend on the HRT, SRT and loading rates, but lack of information on the exact dependency so far prevents an optimal design able to fully eliminate estrogens from wastewater.  相似文献   

16.
17.
A short and efficient method for the stereospecific synthesis of 3α,7α-dihydroxy-5β-androstan-17-one was accomplished from the readily available 4-androstene-3,17-dione. Key steps are the stereospecific and selective epoxidation of 4,6-androstadiene-3,17-dione, followed by hydrogenations with carefully selected reagents, solvents and reaction conditions.  相似文献   

18.
The effect of estradiol, hydrocortisone and progesterone on 3,20-and 3,17-hydroxysteroid dehydrogenase (HSD) in mutants of Streptomyces hydrogenans was compared to the steroid response of the wild type. Mutants were defective in arginine biosynthesis and/or aerial mycelial formation and lacked both enzymes or only 17-HSD. Some 17-HSD mutants had lost the ability to be induced by estradiol, by progesterone or by both. Some 20-HSD mutants had lost the ability to be induced by hydrocortisone, by progesterone or by both. Non-inducibility of 17-and 20-HSD by progesterone was not co-ordinate. An additional study of the growth phase-dependent enzyme activity of the wild type after induction with estradiol, hydrocortisone and progesterone was performed.Non-standard abbreviations 17-HSD 3,17-Hydroxysteroid dehydrogenase (EC 1.1.1.51) - 20-HSD 3,20-hydroxysteroid dehydrogenase (EC 1.1.1.53) - AO acridine orange - EBr ethidium bromide - EMS ethyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

19.
The 17-propanamide derivatives of diastereomeric Δ14-17α- and 17β-estradiols, the potential candidates of a 17β-hydroxysteroid dehydrogenase (17β-HSD) inhibitor, were synthesized in 11 steps from estrone. The principal reactions employed involved in (1) conversion of estrone to the corresponding Δ14-estrone, (2) Grignard reaction of Δ14-estrone with allylmagnesium bromide followed by regioselective hydroboration of the resulting stereoisomeric 17ξ-allyl-Δ14-17ξ-ols with 9-borabicyclo[3.3.1]nonane (9-BBN), and (3) direct amidation of the 17ξ-O-/17ξ-C-spiro-γ-lactones with NH3 under positive pressure of H2.  相似文献   

20.
The present study evaluated protein oxidation, alteration in hydroxysteroid dehydrogenases (3β- and 17β HSD) in testes and serum hormonal profiles of dietary zinc deficient Wistar rats. Pre-pubertal rats were divided into three groups: zinc control (ZC), pairfed (PF), and zinc deficient (ZD) and fed 100 ppm (ZC and PF groups) and 1.0 ppm (ZD group) zinc diet for 2- and 4-weeks. The testes from zinc deficient groups exhibited significant increase in total protein (2 weeks) and protein carbonyl (2- and 4-weeks) concentration as well as 3β- and 17β-hydroxysteroid dehydrogenase activities (4 weeks), whereas a significant decrease was recorded in total protein (testes 4 weeks; serum 2- and 4-weeks), total zinc (testes and serum 2- and 4-weeks), 3β- and 17β-hydroxysteroid dehydrogenase activities (testes 2 weeks), and serum hormonal profiles (FSH and testosterone 2- and 4-weeks). However, LH was below the detectable limits. These results reflect that zinc deficiency during pre-pubertal period affected total protein and zinc status, elevates protein oxidation, and causes dysregulation of the hydroxysteroid dehydrogenases. Low level of zinc attenuated the gonadal physiology which indicates that the metabolic regulation of testes is mediated by combined effects of a specific response (caused by decreased zinc concentration) and a nonspecific response (inhibition of gonadotrophin secretion). All these contribute to testicular dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号