首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gestational-neonatal iron deficiency, a common micronutrient deficiency affecting the offspring of more than 30% of pregnancies worldwide, leads to long-term cognitive and behavioral abnormalities. Preclinical models of gestational-neonatal iron deficiency result in reduced energy metabolism and expression of genes critical for neuronal plasticity and cognitive function, which are associated with a smaller hippocampal volume and abnormal neuronal dendrite growth. Because insulin-like growth factor (IGF) modulates early postnatal cellular growth, differentiation, and survival, we used a dietary-induced rat model to assess the effects of gestational iron deficiency on activity of the IGF system. We hypothesized that gestational iron deficiency attenuates postnatal hippocampal IGF signaling and results in downstream effects that contribute to hippocampal anatomic and functional deficits. At postnatal day (P) 15 untreated gestational-neonatal iron deficiency markedly suppressed hippocampal IGF activation and protein kinase B signaling, and reduced neurogenesis, while elevating extracellular signal-regulated kinase 1/2 signaling and hypoxia-inducible factor-1α expression. Iron treatment beginning at P7 restored IGF signaling, increased neurogenesis, and normalized all parameters by the end of rapid hippocampal differentiation (P30). Expression of the neuron-specific synaptogenesis marker, disc-large homolog 4 (PSD95), increased more rapidly than the glia-specific myelination marker, myelin basic protein, following iron treatment, suggesting a more robust response to iron therapy in IGF-I-dependent neurons than IGF-II-dependent glia. Collectively, our findings suggest that IGF dysfunction is in part responsible for hippocampal abnormalities in untreated iron deficiency. Early postnatal iron treatment of gestational iron deficiency reactivates the IGF system and promotes neurogenesis and differentiation in the hippocampus during a critical developmental period.  相似文献   

2.
Iron is a fundamental element for humans as it represents an essential component of many proteins and enzymes. However, this element can also be toxic when present in excess because of its ability to generate reactive oxygen species. This dual nature imposes a tight regulation of iron concentration in the body. In humans, systemic iron homeostasis is mainly regulated at the level of intestinal absorption and, until now, no regulated pathways for the excretion of iron have been found. The regulation and maintenance of systemic iron homeostasis is critical to human health. Excessive iron absorption leads to iron-overload in parenchyma, while low iron absorption leads to plasma iron deficiency, which manifests as hypoferremia (iron deficiency, ID) and ID anaemia (IDA). ID and IDA are still a major health problem in pregnant women. To cure ID and IDA, iron supplements are routinely prescribed. The preferred treatment of ID/IDA, consisting in oral administration of iron as ferrous sulphate, often fails to exert significant effects on hypoferremia and may also cause adverse effects. Lactoferrin (Lf), an iron-binding glycoprotein abundantly found in exocrine secretions of mammals, is emerging as an important regulator of systemic iron homeostasis. Recent data suggest that this natural compound, capable of interacting with the most important components of iron homeostasis, may represent a valuable alternative to iron supplements in the prevention and cure of pregnancy-associated ID and IDA. In this review, recent advances in the molecular circuits involved in the complex cellular and systemic iron homeostasis will be summarised. The role of Lf in curing ID and IDA in pregnancy and in the maintenance of iron homeostasis will also be discussed. Understanding these mechanisms will provide the rationale for the development of novel therapeutic alternatives to ferrous sulphate oral administration in the prevention and cure of ID and IDA.  相似文献   

3.
Intestinal iron absorption during suckling in mammals   总被引:1,自引:0,他引:1  
The maintenance of appropriate iron levels is important for mammalian health, particularly during the rapid growth period following birth. Too little iron can lead to irreversible damage to the developing central nervous system and too much iron at this point can have adverse long term consequences, possibly due to excessive free radical production. In order to maintain iron levels, intestinal iron absorption is very efficient in young mammals, such that almost all of the iron in breast milk is utilized. However this high level of absorption is unable to be down regulated in response to excess iron as it can be in adults, implying that different regulatory processes are involved during suckling. Various mechanisms have been proposed to explain this high absorption, including enhanced expression of the proteins involved in iron absorption in adults (particularly DMT1 and ferroportin), non-specific uptake via pinocytosis, and the uptake of lactoferrin bound iron by the lactoferrin receptor. However, at present the precise mechanism is unclear. It is possible that all of these components contribute to the high intestinal iron absorption seen during suckling, or a novel, as yet undescribed, mechanism could be involved. This review summarises the evidence for and against each of the mechanisms described above and highlights how little is known about iron homeostasis in this vital stage of development.  相似文献   

4.
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

5.
梁惠惠  冯雪  高海春 《微生物学通报》2020,47(10):3305-3317
铁元素通常以蛋白辅因子的形式参与一系列重要的生命过程,是绝大多数生命必需的营养物质。在细菌生命过程中,一方面铁短缺是必须克服的严峻挑战,另一方面铁过量又会危及生命。铁的这种二元性质要求细菌必须严格保持体内的铁稳态。当前革兰氏阴性菌铁稳态的作用模式及理解主要基于肠道细菌大肠杆菌的长期探索成果。近年来,在环境细菌中开展的相关研究揭示了革兰氏阴性菌的铁稳态机制存在出乎意料的多样性:细菌中铁稳态相关的生物途径及组成蛋白、关键调控系统的生理影响以及铁稳态与其他生物过程的相互影响等方面都显示不同菌种的生存和进化特征。本综述以希瓦氏菌中的相关发现为基础,分析总结革兰氏阴性菌铁稳态重要途径及其组成的多样性、不同途径的相互影响以及调控因子的生理影响和调控机理等方面的研究进展和未解决的问题,以期为革兰氏阴性菌铁稳态的研究提供参考。  相似文献   

6.
Both cellular iron deficiency and excess have adverse consequences. To maintain iron homeostasis, complex mechanisms have evolved to regulate cellular and extracellular iron concentrations. Extracellular iron concentrations are controlled by a peptide hormone hepcidin, which inhibits the supply of iron into plasma. Hepcidin acts by binding to and inducing the degradation of the cellular iron exporter, ferroportin, found in sites of major iron flows: duodenal enterocytes involved in iron absorption, macrophages that recycle iron from senescent erythrocytes, and hepatocytes that store iron. Hepcidin synthesis is in turn controlled by iron concentrations, hypoxia, anemia and inflammatory cytokines. The molecular mechanisms that regulate hepcidin production are only beginning to be understood, but its dysregulation is involved in the pathogenesis of a spectrum of iron disorders. Deficiency of hepcidin is the unifying cause of hereditary hemochromatoses, and excessive cytokine-stimulated hepcidin production causes hypoferremia and contributes to anemia of inflammation.  相似文献   

7.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

8.
We previously noted strong induction of genes related to intestinal copper homeostasis (Menkes Copper ATPase (Atp7a) and metallothionein) in the duodenal epithelium of iron-deficient rats across several stages of postnatal development (Collins, J. F., Franck, C. A., Kowdley, K. V., and Ghishan, F. K. (2005) Am. J. Physiol., 288, G964-G971). We now report significant copper loading in the livers and intestines of iron-deficient rats. These findings are consistent with the hypothesis that there is increased intestinal copper transport during iron deficiency. We additionally found that hepatic Atp7b gene expression does not change with iron deficiency, suggesting that liver copper excretion is not altered. We have developed polyclonal antibodies against rat ATP7A, and we demonstrate the specificity of the immunogenic reaction. We show that the ATP7A protein is present on apical domains of duodenal enterocytes in control rats and on brush-border and basolateral membrane domains in iron-deprived rats. This localization is surprising, as previous in vitro studies have suggested that ATP7A traffics between the trans-Golgi network and the basolateral membrane. We further demonstrate that ATP7A protein levels are dramatically increased in brush-border and basolateral membrane vesicles isolated from iron-deficient rats. Other experiments show that iron refeeding partially corrects the hematological abnormalities seen in iron-deficient rats but that it does not ameliorate ATP7A protein induction, suggesting that Atp7a does not respond to intracellular iron levels. We conclude that ATP7A is involved in copper loading observed during iron deficiency and that increased intestinal copper transport is of physiological relevance, as copper plays important roles in overall body iron homeostasis.  相似文献   

9.
Iron deficiency anemia is the most common nutritional disorder in the world. Anemia is especially serious during pregnancy, with deleterious consequences for both the mother and her developing fetus. We have developed a model to investigate the mechanisms whereby fetal growth and development are affected by maternal anemia. Weanling rats were fed a control or iron-deficient diet before and throughout pregnancy and were killed at Day 21. Dams on the deficient diet had lower hematocrits, serum iron concentrations, and liver iron levels. Similar results were recorded in the fetus, except that the degree of deficiency was markedly less, indicating compensation by the placenta. No effect was observed on maternal weight or the number and viability of fetuses. The fetuses from iron-deficient dams, however, were smaller than controls, with higher placental:fetal ratios and relatively smaller livers. Iron deficiency increased levels of tumor necrosis factor alpha (TNFalpha) only in the trophoblast giant cells of the placenta. In contrast, levels of type 1 TNFalpha receptor increased significantly in giant cells, labyrinth, cytotrophoblast, and fetal vessels. Leptin levels increased significantly in labyrinth and marginally (P = 0.054) in trophoblast giant cells. No change was observed in leptin receptor levels in any region of the placentas from iron-deficient dams. The data show that iron deficiency not only has direct effects on iron levels and metabolism but also on other regulators of growth and development, such as placental cytokines, and that these changes may, in part at least, explain the deleterious consequences of maternal iron deficiency during pregnancy.  相似文献   

10.
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.  相似文献   

11.
Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1–3 (TET 1–3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1–3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.  相似文献   

12.
13.
The aim of this study was to identify genes that influence iron regulation under varying dietary iron availability. Male and female mice from 20+ BXD recombinant inbred strains were fed iron-poor or iron-adequate diets from weaning until 4 mo of age. At death, the spleen, liver, and blood were harvested for the measurement of hemoglobin, hematocrit, total iron binding capacity, transferrin saturation, and liver, spleen and plasma iron concentration. For each measure and diet, we found large, strain-related variability. A principal-components analysis (PCA) was performed on the strain means for the seven parameters under each dietary condition for each sex, followed by quantitative trait loci (QTL) analysis on the factors. Compared with the iron-adequate diet, iron deficiency altered the factor structure of the principal components. QTL analysis, combined with PosMed (a candidate gene searching system) published gene expression data and literature citations, identified seven candidate genes, Ptprd, Mdm1, Picalm, lip1, Tcerg1, Skp2, and Frzb based on PCA factor, diet, and sex. Expression of each of these is cis-regulated, significantly correlated with the corresponding PCA factor, and previously reported to regulate iron, directly or indirectly. We propose that polymorphisms in multiple genes underlie individual differences in iron regulation, especially in response to dietary iron challenge. This research shows that iron management is a highly complex trait, influenced by multiple genes. Systems genetics analysis of iron homeostasis holds promise for developing new methods for prevention and treatment of iron deficiency anemia and related diseases.  相似文献   

14.
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production.More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.  相似文献   

15.
16.
To identify novel genes associated with iron metabolism, we performed gene chip studies in two models of iron deficiency: iron-deprived rats and rats deficient in the principal intestinal iron transporter, divalent metal transporter 1 (i.e., Belgrade rats). Affymetrix rat genome gene chips were utilized (RAE230) with cRNA samples derived from duodenum and jejunum of experimental and control animals. Computational analysis and statistical data reduction identified 29 candidate genes, which were induced in both models of iron deficiency. Gene ontology analysis showed enrichment for genes related to lipid homeostasis, and one gene related to this physiological process, a leukocyte type, arachidonate 12-lipoxygenase (Alox15), was selected for further examination. TaqMan real-time PCR studies demonstrated strong induction of Alox15 throughout the small and large intestine, and in the liver of iron-deficient rats. Polyclonal antibodies were developed and utilized to demonstrate that proteins levels are significantly increased in the intestinal epithelium of iron-deprived rats. HPLC analysis revealed altered intestinal lipid metabolism indicative of Alox15 activity, which resulted in the production of biologically active lipid molecules (12-HETE, 13-HODE, and 13-HOTE). The overall effect is a perturbation of intestinal lipid homeostasis, which results in the production of lipids essentially absent in the intestine of control rats. We have thus provided mechanistic insight into the alteration in lipid metabolism that occurs during iron deficiency, in that induction of Alox15 mRNA expression may be the primary event. The resulting lipid mediators may be related to documented alterations in villus structure and cell proliferation rates in iron deficiency, or to structural alterations in membrane lipid composition.  相似文献   

17.
Copper deficiency lowers brain copper and iron during development. The reduced iron content could be due to hypoferremia. Experiments were conducted to evaluate plasma iron and “ferroxidase” hypotheses by determining copper and iron status of Holtzman albino rats following gestational/lactational copper deficiency. Copper deficient (Cu−) dams on treatment for 5 weeks, two of gestation and three of lactation, had markedly lower copper content of milk and mammary tissue, and lower milk iron. Newborn pups from Cu− dams had lower copper and iron concentrations. Compared to Cu+ pups, Cu− pups, analyzed between postnatal age (P) 0 and P26, were smaller, anemic, had lower plasma iron, cardiac hypertrophy, and near zero ceruloplasmin activity. Liver copper in Cu+ pups increased then decreased during development and major reductions were evident in Cu− pups. Liver iron in Cu+ pups decreased with age while nursing but increased after eating solid food. Liver iron was lower in Cu− pups at P0 and P13 and normal at P20 and P26. Small intestinal copper decreased with age in Cu+ pups and was lower in Cu− pups. Intestinal iron levels in Cu− pups were higher than Cu+ pups postweaning in some experiments. Reduction in plasma iron in Cu− pups is likely due to a decreased “ferroxidase” function leading to lower placental iron transport, a lower milk iron diet, and partial block in iron uptake from intestine but is not due to failure to mobilize hepatic iron, in contrast to older rats eating diet with adequate iron.  相似文献   

18.
19.
铁作为一种必需的营养元素,在哺乳动物体内的重要作用越来越为人们所重视。动物体内存在着严格的铁代谢调节机制,以确保体内铁始终处于正常生理水平。如果铁代谢失调、体内铁缺乏或过负荷均会导致各种临床疾病。研究发现,肝脏抗菌多肽(hepcidin)很可能是一种控制小肠铁吸收及调节体内铁稳态的关键物质,是一种极为重要的铁调节激素。本文综述了铁的生理作用、铁缺乏引起的疾病(如:缺铁性贫血和儿童神经系统疾病)和铁过负荷引起的疾病(如:肝损伤、心血管疾病、帕金森病和癌症等),并对如何利用现代化技术手段在基因水平开展铁紊乱相关疾病的治疗做了展望。  相似文献   

20.
Mining iron: iron uptake and transport in plants   总被引:7,自引:0,他引:7  
Kim SA  Guerinot ML 《FEBS letters》2007,581(12):2273-2280
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号