首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

2.
Fluxes of major ions and nutrients were measured in the watershed-lake ecosystem of a strongly acidified lake, ?ertovo jezero (?ertovo Lake), in the 2001 through 2005 hydrological years. Water balance was estimated from precipitation and throughfall amounts, and measured outflow from the lake. The average water input into and outflow from the watershed-lake ecosystem was 1461 mm and 1271 mm (40 L km?2 s?1), respectively, and the water residence time in the lake averaged 662 days. The ecosystem has been recovering from acidification since the late 1980s. Still, however, ?ertovo watershed was an average net source of 23 mmol m?2 yr?1 of SO 4 2? . Nitrogen saturation of the watershed caused low retention of the deposited inorganic N (23% on average). After a dry summer in 2003 and a cold winter in 2004, the watershed became a net source of inorganic N (19 mmol m?2 yr?1). Nitrogen transformations and SO 4 2? release were the dominant terrestrial sources of H+ (81 and 47 mmol m?2 yr?1, respectively) and the watershed was a net source of 42 mmol H+ m?2 yr?1. Ionic composition of tributaries showed seasonal variations with the most pronounced changes in NO 3 ? , base cations, DOC, and ionic Al (Ali) concentrations. The in-lake biogeochemical processes reduced the incoming H+ by ~50% (i.e., neutralized on average 222 mmol H+ m?2 yr?1, on a lake-area basis). Denitrification, SO 4 2? reduction, and photochemical and microbial decomposition of allochthonous organic matter were the most important in-lake H+ consuming processes (215, 85, and 122 mmol H+ m?2 yr?1, respectively), while hydrolysis of Ali was the dominant H+ generating process (96 mmol H+ m?2 yr?1) in ?ertovo Lake. Photochemical liberation from organic complexes was an additional in-lake source of Ali. The net in-lake retention or removal of nutrients (carbon, phosphorus, nitrogen, and silica) varied between 18% and 34% of their inputs.  相似文献   

3.
Fluxes of major ions and nutrients were measured in the watershed-lake ecosystem of a strongly acidified lake, Ple?né jezero (Ple?né Lake), in the Czech Republic in hydrological years from 2001 through 2005. The lake is situated in a Norway spruce forest and has a steep watershed between elevations of 1090 and 1378 m. The average water input and output from the ecosystem was 1372 mm and 1157 mm (37 L km?2 s?1), respectively, and the water residence time averaged 306 days. Despite ecosystem recovery from acidification occurring since the late 1980s, the Ple?né watershed was an average net source of 25 mmol SO 4 2? m?2 yr?1. Nitrogen saturation of the watershed caused low retention of the deposited inorganic N (< 44% on average) before 2004. Then, the watershed became a net source of 28–32 mmol m?2 yr?1 of inorganic N in the form of NO 3 ? due to climatic effects (a dry summer in 2003 and a cold winter in 2004) and forest dieback caused by a bark beetle attack in 2004. Nitrogen transformations and SO 4 2? release were the dominant terrestrial sources of H+ (72 and 49 mmol m?2 yr?1, respectively) and the watershed was a net source of 24 mmol H+ m?2 yr?1. Ionic composition of surface inlets showed seasonal variations, with the most pronounced changes in NO 3 ? , ionic Al (Ali), and DOC concentrations, while the composition of subsurface inlets was more stable. The in-lake biogeochemical processes reduced on average 59% of the incoming H+ (251 mmol H+ m?2 yr?1 on a lake-area basis). NO 3 ? assimilation and denitrification, photochemical and microbial decomposition of allochthonous organic acids, and SO 4 2? reduction in the sediments were the most important aquatic H+ consuming processes (358, 121, and 59 mmol H+ m?2 yr?1, respectively), while hydrolysis of Ali was the dominant in-lake H+ generating process (233 mmol H+ m?2 yr?1). Photochemical liberation from organic complexes was an additional in-lake source of Ali. The net in-lake retention or removal of total phosphorus, total nitrogen, and silica were on average 50%, 27%, and 23%, respectively. The lake was a net source of NH 4 + due to a cease in nitrification (pH < 5) and from NH 4 + production by dissimilation exceeding its removal by assimilation.  相似文献   

4.
Abstract The rates of uptake of nitrate-N per unit length; surface area and volume of root were measured in solution depletion experiments conducted in a root laboratory, using intact roots of two 4.5-year-old apple trees (Discovery/M.9 and Worcester Pearmain/M.9) at two different depths in the soil profile. In Discovery/M.9, NO3? uptake rate per unit root was constant over the 20-200 mmol m?3 range of solution concentration. In Worcester/M.9, the uptake rate per unit root over the 200-150 mmol m?3 range (corresponding to a ‘lag’ phase) was lower than that over 150-20 mmol m?3. The uptake rates after the lag phase at depths of 46 and 104 cm were ca. 1.3 and 5.0 times greater than those in Discovery/M.9 at the 46 and 110 cm depths, respectively. The concentration below which net uptake was zero was ca. 1 mmolm?3. In Discovery/M.9, the uptake rate per unit root at the 46cm depth was about 2.8 times that at 110 cm whereas in Worcester/M.9, the uptake rates at 46cm depth were about 1.8 and 1.4 times lower than those at 104cm over the solution concentration ranges 200-150 and 150-20 mmol m?3, respectively. Only small differences were observed in uptake rates per unit root between 1400-1700 h, 2400-0400 h, and 0700-1100 h. For successive 5°C-increments in root temperature between 5 and 25° C, the nitrate uptake rate per unit root increased by 130, 10, 30 and 5%, respectively. A major change in the activation energy for nitrate uptake was observed at a transition temperature located between 5°and 10°C.  相似文献   

5.
The exchange of carbon dioxide (CO2) between the atmosphere and a forest after disturbance by wind throw in the western Russian taiga was investigated between July and October 1998 using the eddy covariance technique. The research area was a regenerating forest (400 m × 1000 m), in which all trees of the preceding generation were uplifted during a storm in 1996. All deadwood had remained on site after the storm and had not been extracted for commercial purposes. Because of the heterogeneity of the terrain, several micrometeorological quality tests were applied. In addition to the eddy covariance measurements, carbon pools of decaying wood in a chronosequence of three different wind throw areas were analysed and the decay rate of coarse woody debris was derived. During daytime, the average CO2 uptake flux was ?3 µmol m?2s?1, whereas during night‐time characterised by a well‐mixed atmosphere the rates of release were typically about 6 µmol m?2s?1. Suppression of turbulent fluxes was only observed under conditions with very low friction velocity (u* ≤ 0.08 ms?1). On average, 164 mmol CO2 m?2d?1 was released from the wind throw to the atmosphere, giving a total of 14.9 mol CO2 m?2 (180 g CO2 m?2) released during the 3‐month study period. The chronosequence of dead woody debris on three different wind throw areas suggested exponential decay with a decay coefficient of ?0.04 yr?1. From the magnitude of the carbon pools and the decay rate, it is estimated that the decomposition of coarse woody debris accounted for about a third of the total ecosystem respiration at the measurement site. Hence, coarse woody debris had a long‐term influence on the net ecosystem exchange of this wind throw area. From the analysis performed in this work, a conclusion is drawn that it is necessary to include into flux networks the ecosystems that are subject to natural disturbances and that have been widely omitted into considerations of the global carbon budget. The half‐life time of about 17 years for deadwood in the wind throw suggests a fairly long storage of carbon in the ecosystem, and indicates a very different long‐term carbon budget for naturally disturbed vs. commercially managed forests.  相似文献   

6.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

7.
Abstract Net nitrate uptake rates were measured and the kinetics calculated in non-nodulated Pisum sativum L. cv. Marma and Lemna gibba L. adapted to constant relative rates of nitrate-N additions (RA), ranging from 0.03 to 0.27 d?1 for Pisum and from 0.05 to 0.40 d?1 for Lemna, Vmax of net nitrate uptake (measured in the range 10 to 100 mmol m?3 nitrate, i.e. ‘system I’) increased with RA in the growth limiting range but decreased when RA exceeded the relative growth rate (RGR), Km was not significantly related to changes in RA. On the basis of previous 13N-flux experiments, it is concluded that the differences in Vmax at growth limiting RA are attributable to differences in influx rates. Linear relationships between Vmax and tissue nitrogen concentrations were obtained in the growth limiting range for both species, and extrapolated intercepts relate well with the previously defined minimal nitrogen concentrations for plant growth (Oscarson, Ingemarsson & Larsson, 1989). Analysis of Vmax for net nitrate uptake on intact plant basis in relation to nitrogen demand during stable, nitrogen limited, growth shows an increased overcapacity at lower RA values in both species, which is largely explained by the increased relative root size at low RA. A balancing nitrate concentration, defined as the steady state concentration needed to sustain the relative rate of increase in plant nitrogen (RN), predicted by RA, was calculated for both species. In the growth limiting range, this value ranges from 3.5 mmol m?3 (RA 0.03 d?1) to 44 mmol m?3 (RA 0.21 d?1) for Pisum and from 0.2 mmol m?3 (RA 0.05 d?1) to 5.4 mmol m?3 (RA 0.03 d?1) for Lemna. It is suggested that this value can be used as a unifying measure of the affinity for nitrate, integrating the performance of the nitrate uptake system with nitrate flux and long term growth and demand for nitrogen.  相似文献   

8.
Freeze-dried aqueous extracts of autumn-shed maple leaves, birch leaves, and spruce needles were added to a third-order reach of Bear Brook, New Hampshire at concentrations similar to those predicted to occur during peak leaf fall. Leachate from each species was rapidly removed from solution. With initial concentrations of added leachate of approximately 5 mgl–1, dissolved organics (DOC) uptake ranged from 73 to 130 mg m–2 h–1 for the first five hours of travel downstream from the point of addition. There was no preferential removal of DOC of low molecular weight, or of monomeric carbohydrates relative to phenolics or unidentified DOC.Stream sediments and organic debris rapidly removed DOC from solution in laboratory experiments. No significant flocculation or microbial assimilation of sugar maple leachate occurred in stream water alone. Stream sediments showed small increases in respiration with addition of leaf leachate, but no increase in respiration occurred upon addition of leachate to organic debris. Abiotic adsorption due to the high concentrations of exchangeable iron and aluminium in stream sediments may be responsible for much of the rapid removal of leaf leachate observed in field experiments. Abiotic processes appear to retain DOC within the stream, thereby allowing subsequent metabolism of dissolved organic carbon by stream microflora.  相似文献   

9.
Peatland streams have repeatedly been shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, and in combination with dissolved (DOC) and particulate organic carbon (POC) represent a potentially important pathway for catchment greenhouse gas (GHG) and carbon (C) losses. The aim of this study was to create a complete C and GHG (CO2, CH4, N2O) budget for Auchencorth Moss, an ombrotrophic peatland in southern Scotland, by combining flux tower, static chamber and aquatic flux measurements from 2 consecutive years. The sink/source strength of the catchment in terms of both C and GHGs was compared to assess the relative importance of the aquatic pathway. During the study period (2007–2008) the catchment functioned as a net sink for GHGs (352 g CO2‐Eq m?2 yr?1) and C (69.5 g C m?2 yr?1). The greatest flux in both the GHG and C budget was net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only 4% of CO2 equivalents captured by NEE to the atmosphere, whereas evasion of GHGs from the stream surface returned 12%. DOC represented a loss of 24% of NEE C uptake, which if processed and evaded downstream, outside of the catchment, may lead to a significant underestimation of the actual catchment‐derived GHG losses. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the need to consider both the C and GHG budgets simultaneously.  相似文献   

10.
The influence of biostimulation using dissolved organic carbon (DOC) on rhizodegradation of perchlorate and plant uptake was studied under greenhouse conditions using soil and hydroponic bioreactors. One set of bioreactors planted with willow (Salix babylonica) plants was spiked with 300 mg L?1 DOC in the form of chicken manure extract, whereas a second set was not treated with DOC. A similar experiment without willow plants was run in parallel to the planted bioreactors. The planted soil bioreactors amended with DOC reduced perchlorate from 65.85 to 2.67 mg L?1 in 21 days for humic soil (95.95% removal) and from 68.99 to 0.06 mg L? 1 for sandy loam (99.91% removal) in 11 days. Nonplanted DOC treated soil bioreactors achieved complete perchlorate removal in 6 and 8 days for humic and sandy loam, respectively. Both planted and nonplanted soil bioreactors without DOC removed > 95% perchlorate within 8 days. Planted soil bioreactors respiked with perchlorate reduced perchlorate to nondetectable levels in 6 days. Hydroponics experiment amended with DOC reduced perchlorate from approximately 100 mg L? 1 to nondetectable levels within 7 to 9 days. Hydroponic bioreactors without DOC had low perchlorate removal rates, achieving 30% removal in 42 days. Leaf samples from sandy loam soil bioreactors without DOC had four times perchlorate phytoaccumulation than the DOC-treated plants. Similar results were obtained with the nonplanted bioreactors. Persistence of perchlorate in solution of planted hydroponic bioreactors without DOC amendment suggested that natural DOC from the plant exudates was not enough to biostimulate perchlorate reducing microbes. The hydroponic bioreactor study provided evidence that DOC is a limiting factor in the rhizodegradation of perchlorate.  相似文献   

11.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

12.
The effect of CO2 on potassium transport by Chlorella fusca   总被引:1,自引:1,他引:0  
Abstract. The effect of CO2 on net K+ uptake by Chlorella fusca grown on high CO2 levels was examined by passing 1.5% CO2 through algal suspensions gassed previously with air or CO2-free air Addition of CO2 in the light caused a large net uptake of K+ (initial velocity 4.2–9.2 mmol s?1 m?3 cells) which decreased the concentration of K+ in the supernatant from 0.1–0.2 mol m?3 to 3–10 mmol m?3. In the dark and in the presence of 30 mmol m?3 DCMU, no effects were found. Measurement or the unidirectional K+ fluxes by using 86Rb+ as a label showed that in the presence of 1.5% CO2, influx of K+ was increased by a factor of 2–4 while efflux was inhibited completely. CO2 hyperpolarized the membrane potential (determined through TPP+ uptake) from –120mV to –130 mV which could not explain the more than 15,000-fold K+ accumulations. In the light, CO2 lowered the intracellular pH (determined with DMO) by 0.5 units. In the dark and in the presence of DCMU only, a small acidification of 0.1 units was found. During the first 15 min after addition of CO2 the malate content of the cells increased from 0.7 to 1.5 mol m?3 packed cells. On the basis of these and earlier results, CO2-induced net K+ uptake is interpreted as a stimulation of an electroneutral ATP-dependent K+/H+ exchange at the plasmalemma. This exchange acts as a ‘pHstat’ by reducing the intracellular acidification caused by production of acidic assimilation products.  相似文献   

13.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

14.
1. Denitrification, net oxygen consumption and net nitrous oxide flux to the atmosphere were measured in three small rivers (discharge approximately 2–27 m3 s?1) at the whole reach scale during Spring and Summer, 2002. Two of these rivers (Iroquois River and Sugar Creek in north‐west Indiana – north‐east Illinois, U.S.A.) drained agricultural catchments and the other (Millstone River in central New Jersey, U.S.A.) drained a mixed suburban–agricultural catchment. 2. Denitrification, oxygen consumption and N2O flux were measured based on net changes in dissolved gas concentrations (N2, O2, and N2O) during riverine transport, correcting for atmospheric exchange. On each date, measurements were made during both light and dark periods. 3. Denitrification rates in these rivers ranged from 0.31 to 15.91 mmol N m?2 h?1, and rates within each river reach were consistently higher during the day than during the night. This diurnal pattern could be related to cyclic patterns of nitrification driven by diurnal variations in water column pH and temperature. 4. Oxygen consumption ranged from 2.56 to 241 mmol O2 m?2 h?1. In contrast to denitrification, net oxygen consumption was generally higher during the night than during the day. 5. River water was consistently supersaturated with N2O, ranging from 102 to 209% saturated. Net flux of N2O to the atmosphere ranged from 0.4 to 60 μmol N m?2 h?1. Net flux of N2O was generally higher at night than during the day. The high flux of N2O from these rivers strengthens the argument that rivers are an important contributor to anthropogenic emissions of this greenhouse gas.  相似文献   

15.
Net rates of NO3? and K+ uptake were compared for oilseed rape (Brassica napus L. cv. Jet neuf), perennial ryegrass (Lolium perenne L. cv. S23), Italian ryegrass (Lolium multiflorum Lam. cv. Augusta) and wheat (Triticum aestivum L. cv. Fen-man) in flowing solution culture during a 4-day sequence of low-low-high-high natural irradiance. Concentrations of NO3? (10 μM) and K+ (2.5 μM) in solutions were maintained automatically and hourly variation in net uptake of these ions was measured. During the 2 days of low irradiance (<1 MJ m?2 day?1) the uptake rates of both ions by all species were low at <1 mmol NO3?, m?2 h?1 and <0.4 mmol K+ m?2 h?1. Uptake increased in each species during the first day of high irradiance (7.90 MJ m?2 day?1) to >4 mmol NO3? m?2 h?1 and >1.4 mmol K+ m?1 h?1. These higher rates were maintained throughout the following night. The lag-time between maximum irradiance and the onset of the highest acceleration in uptake was greater for NO3? (5–8 h) than for K+ (≤1 h) in rape, wheat and Italian ryegrass. Uptake of NO3?, by perennial ryegrass showed an almost constant acceleration for 18 h following maximum irradiance. In all species the measured maximum inflows (uptake rate per unit root length) of both ions were greater than theoretical maximum potential inflows to a non-competing infinite-sink root in soil, by factors of 7 and 36, respectively, for NO3? and K+, averaged over all species.  相似文献   

16.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

17.
Chlamydomonas reinhardtü Dangeard, adenine or guanine can be used as the sole nitrogen source for growth by means of an inducible system which is repressed by ammonia. Cells grown on either adenine or guanine were able to take up both purines, although the adenine uptake rate was always about 40% of the guanine uptake rate. Both adenine and guanine were taken up by an inducible system(s) exhibiting hyperbolic kinetics with identical apparent A, values of 3-2 mmol m?3 for adenine and 3-2mmol m?3 for guanine. Adenine and guanine utilization depended on pH, with similar optimal pH values of 7·3 and 7·4, respectively. Adenine and guanine each acted as a competitive inhibitor of the other's uptake, and their utilization was also inhibited by hypoxanthine, xanthine and urate. Inhibition of adenine uptake by guanine and hypoxanthine was competitive, with A′, values of 5·5 and 1. 6 mmol m?3 respectively. Guanine uptake was also inhibited competitively by adenine (K1= 1·3mmol m?3) and hypoxanthine (K1= 3. 3 mmol m?3). Utilization of both adenine and guanine was inhibited by cyanide, azide, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, 2,4-dinitrophenol and carbonylcyanide m-chlorophenylhydrazone, and was also sensitive to p-hydroxymercuribenzoate and N-ethyl-maleimide. On the basis of these results, taken together, the possibility that adenine and guanine are translocated into Chlamydomonas by a common system is discussed.  相似文献   

18.
A dual-tube dense-phase silicone rubber membrane bioreactor was investigated for control of cyclohexane-contaminated air as part of a jet propulsion (JP-8) fuel remediation investigation strategy. The reactor was seeded with a mixed bacterial consortium isolated from the water/fuel interface of a JP-8 jet fuel sample and activated sludge, capable of aromatic and cyclic compound biodegradation. Cyclohexane removal ranged from 1.1 to 28.6 mg L?1, with removal percentages ranging from 4.6% to 37.6%. Removal in the bioreactor ranged from 29.4 to 596.6 mg min?1 m?2 and measured elimination capacities ranged from 46.7 to 947.9 g m?3 h?1. Removal rates and elimination capacity increased with increasing biofilm growth and with increasing loading rates of cyclohexane. Loading rates ranged from 395.9 to 2189.5 mg min?1 m?2. Results of this study showed effective removal of cyclohexane using the membrane bioreactor, suggesting that this technology may have applicability for treating vapors contaminated with cyclic hydrocarbons.  相似文献   

19.
Proteaceae are adapted to acquire P from nutrient‐impoverished soils; many function at very low leaf P levels, but are killed by P fertilization. Phosphorus toxicity develops at a remarkably low external P concentration. Previous studies have described P toxicity in Proteaceae, but the physiological basis for it remained unclear. The aim of the present study was to elucidate the physiological basis of P toxicity in Hakea prostrata R. Br. (Proteaceae). Triticum aestivum L. (Gramineae), Medicago truncatula Gaertn., Lupinus albus L. (both Fabaceae) and Hakea prostrata R.Br. were grown in solution at a range of P concentrations (0–1000 mmol P m?3), and determined net P‐uptake rates at 5 (all species) and 50 mmol P m?3 (H. prostrata only). With the exception of H. prostrata, net P‐uptake rates were fastest for plants grown without added P. Down‐regulation occurred for T. aestivum, M. truncatula and L. albus when the P concentration during growth was increased from 0 to 0.8 mmol P m?3, whereas in H. prostrata rates decreased only for plants grown at 10 mmol P m?3 or more. The leaf [P] at which P toxicity occurred in H. prostrata exceeded 10 mg g?1 dry matter, similar to that for crop species. The low capacity to reduce P uptake in response to increased supply offers a physiological explanation for the extreme sensitivity to P supply in H. prostrata, and possibly other Proteaceae.  相似文献   

20.
Dissolved organic carbon (DOC) and nitrogen (DON) concentrations were quantified in urban and rural watersheds located in central Texas, USA between 2007 and 2008. The proportion of urban land use ranged from 6 to 100% in our 12 study watersheds which included nine watersheds without waste water treatment plants (WWTP) and three watersheds sampled downstream of a WWTP. Annual mean DOC concentrations ranged 20.4–52.5 mg L?1. Annual mean DON concentrations ranged 0.6–1.9 mg L?1. Only the rural watersheds without a WWTP had significantly lower DOC concentrations compared to those watersheds with a WWTP but all the streams except two had significantly reduced DON compared to those with a WWTP. Analysis of the nine watersheds without a WWTP indicated that 68% of the variability in mean annual DOC concentration was explained by urban open areas such as golf courses, sports fields and neighborhood parks under turf grass. There was no relationship between annual mean DON concentration and any land use. Urban open area also explained a significant amount of the variance in stream sodium and stream sodium adsorption ratio (SAR). Ninety-four percent of the variance in annual mean DOC concentration was explained by SAR. Irrigation of urban turf grass with domestic tap water high in sodium (>181 mg Na+ L?1) may be inducing sodic soil conditions in watershed soils in this region resulting in elevated mean annual DOC concentrations in our streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号