首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The abrupt onset of large scale nonproton ion release by photo-excited purple membrane suspensions has been observed near neutral pH using transient conductivity measurements. At pH 7 and low ionic strength, the conductivity transients due to proton and nonproton ions are of comparable magnitude but of opposite sign: fast proton release and ion uptake, followed by slow proton uptake and ion release. By increasing either the pH or the NaCl concentration, the amplitude of the conductivity transient increases sharply and the signal is then dominated by nonproton ion release. These results can be understood in terms of light-induced changes in the population of counterions condensed at the purple membrane surface caused by changes in the surface charge density. The critical charge density required for condensation to occur is evidently achieved near neutral pH by ionizing dissociable groups on the membrane by either titration (increasing the pH) or shifting their pKs (increasing the ionic strength).  相似文献   

2.
The amplitudes of the conductivity transients in photoexcited purple membranes were studied as a function of the energy of the actinic flash to determine the optical cross section of the process giving rise to the conductivity transient. Heating of the solution by the absorbed light causes an additional conductivity change and serves as an internal actinometer; the experiment directly yields the ratio of the cross section of ion release/uptake to that for light absorption. In effect, this counts the number of bacteriorhodopsin (bR) molecules involved in the conductivity transient per photon absorbed. At pH 7 in 0.4-0.5 M NaCl, where the conductivity signals are dominated by nonproton ions, the ratio is between 3 and 4, i.e., excitation of any one of several chromophores generates the same ion release signal. The simplest interpretation is that at pH 7 cooperative conformational changes cause a transient change in the surface charge distribution near all the affected bR molecules, resulting in the transient release of numerous counterions. As a comparison, at pH 4 where the signals are due to protons alone, the cross section data indicate that only a single bR molecule is involved in the proton movements. In this case, the results also show that the sum of the primary forward and reverse quantum yields (for the reactions: bR----K) is 0.88 +/- 0.09.  相似文献   

3.
Light-induced release/uptake of both protons and other ions cause transient changes in conductivity in suspensions of purple membrane (PM) fragments (Marinetti, Tim, and David Mauzerall, 1983, Proc. Natl. Acad. Sci. USA, 80:178-180). We find that the release/uptake of nonproton ions with quantum yield greater than 1 is observed at most pHs and ionic strengths. Only at both low pH and low ionic strength is the conductivity transient mostly due to protons. Our hypothesis is that during the photocycle, changes occur in the PM's dense surface charge distribution that result in changes in the number of counterions bound or condensed at the membrane surface. To test this, the PM structure was perturbed with the nonionic detergent Triton X-100. Immediately after addition, Triton does not abolish the nonproton ion movements; in fact at low detergent concentrations (0.02% vol/vol) the signal amplitudes increased considerably. However, when PM is completely solubilized into monomers in Triton, the conductivity transients are due to protons alone, though at lower quantum yield compared with native PM. These results suggest that changes in the surface charge distribution in native PM's photocycle could contribute to proton transfer between the aqueous phase and bR itself.  相似文献   

4.
Bacteriorhodopsin (bR), a membrane protein that can generate a light-driven proton pump, was successfully reconstituted into vesicles composed of an artificial cyclic lipid that mimics archaeal membrane lipids. Unlike reconstituted bR in 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles, the net topology and structure of bR molecules in cyclic lipid vesicles are identical to those in the native purple membrane of Halobacterium salinarum.  相似文献   

5.
In purple membrane added with general anesthetics, there exists an acid-base equilibrium between two spectral forms of the pigment: bR570 and bR480 (apparent pKa = 7.3). As the purple 570 nm bacteriorhodopsin is reversibly transformed into its red 480 nm form, the proton pumping capability of the pigment reversibly decreases, as indicated by transient proton release measurements and proton translocation action spectra of mixture of both spectral forms. It happens in spite of a complete photochemical activity in bR480 that is mostly characterized by fast deprotonation and slow reprotonation steps and which, under continuous illumination, bleaches with a yield comparable to that of bR570. This modified photochemical activity has a correlated specific photoelectrical counterpart: a faster proton extrusion current and a slower reprotonation current. The relative areas of all photocurrent phases are reduced in bR480, most likely because its photochemistry is accompanied by charge movements for shorter distances than in the native pigment, reflecting a reversible inhibition of the pumping activity.  相似文献   

6.
Bacteriorhodopsin (bR) in the native purple membrane, in wild type expressed in E. coli and reconstituted in lipid vesicles, and its constituted mutants with substitutions of Tyr-185 by Phe all are found to have different visible retinal CD spectra. The results strongly suggest that the environment of the retinal in bR determines the sign and heterogeneity of its visible retinal CD spectrum. This supports the recent proposal that the observed biphasic CD spectrum of bR is due to the superposition of the CD spectra having opposite signs of more than one type of bR rather than due to exciton coupling.  相似文献   

7.
The photocurrent transient generated by bacteriorhodopsin (bR) on a tin-oxide electrode is due to pH change and not to charge displacement as previously assumed. Films of either randomly oriented or highly oriented purple membranes were deposited on transparent electrodes made of tin-oxide-coated glass. The membranes contained either wild-type or D96N-mutant bR. When excited with yellow light through the glass, the bR pumps protons across the membrane. The result is a rapid local pH change as well as a charge displacement. Experiments with these films show that it is the pH change rather than the displacement that produces the current transient. The calibration for the transient pH measurement is given. The sensitivity of a tin-oxide electrode to a transient pH change is very much larger than its sensitivity to a steady-state pH change.  相似文献   

8.
Monodisperse lipid nanodiscs are particularly suitable for characterizing membrane protein in near-native environment. To study the lipid-composition dependence of photocycle kinetics of bacteriorhodopsin (bR), transient absorption spectroscopy was utilized to monitor the evolution of the photocycle intermediates of bR reconstituted in nanodiscs composed of different ratios of the zwitterionic lipid (DMPC, dimyristoyl phosphatidylcholine; DOPC, dioleoyl phosphatidylcholine) to the negatively charged lipid (DOPG, dioleoyl phosphatidylglycerol; DMPG, dimyristoyl phosphatidylglycerol). The characterization of ion-exchange chromatography showed that the negative surface charge of nanodiscs increased as the content of DOPG or DMPG was increased. The steady-state absorption contours of the light-adapted monomeric bR in nanodiscs composed of different lipid ratios exhibited highly similar absorption features of the retinal moiety at 560 nm, referring to the conservation of the tertiary structure of bR in nanodiscs of different lipid compositions. In addition, transient absorption contours showed that the photocycle kinetics of bR was significantly retarded and the transient populations of intermediates N and O were decreased as the content of DMPG or DOPG was reduced. This observation could be attributed to the negatively charged lipid heads of DMPG and DOPG, exhibiting similar proton relay capability as the native phosphatidylglycerol (PG) analog lipids in the purple membrane. In this work, we not only demonstrated the usefulness of nanodiscs as a membrane-mimicking system, but also showed that the surrounding lipids play a crucial role in altering the biological functions, e.g., the ion translocation kinetics of the transmembrane proteins.  相似文献   

9.
R Casadio  W Stoeckenius 《Biochemistry》1980,19(14):3374-3381
Triton X-100 solubilized monomers of bacteiorhodopsin (bR) show a decrease in the extent of light adaptation; the red shift and the absorbance increase of the visible absorption band are reduced no less than half the values observed in purple membrane (p.m.) with a corresponding reduction in the isomerization of 13-cis- to all-trans-retinal. Cross-linking of bR with glutaraldehyde before exposure to Triton prevents dissociation of the lattice and reduction in light adaptation. Experiments with cross-linked and lipid-extracted p.m. show that Triton effectively substitutes for the native membrane lipids and that the lattice structure apparently stabilizes the light-adapted state of bR under illumination. In lipid vesicles at molar lipid protein ratios greater than or equal to 80, bR exists as monomers above the lipid-phase transition and aggregates below the phase transition. Above the lipid-phase transition and aggregates below the phase transition. Above the lipid-phase transition light adaptation in the monomers, measured as either the red shift of the visible absorbance maximum or the isomerizaiton o 13-cis- to all-trans-retinal, is also reduced to less than half of the extent observed in intact purple membrane or in the bR aggregates formed in lipid vesicles below the plhase transition. At very high lipid to protein ratios, bR molecules cannot aggregate when the temperature is decreased below the phase transition, and these monomers in a solid lipid phase show the same reduced extent of light adaptation as monomers above the phase transition, thus confirming that this effect is mainly due to the absence of protein-protein interaction and not to the state of the lipid. The extent of the red shift upon light adaptation may be used as a convenient indicator to distinguish the aggregated and monomeric states of bR.  相似文献   

10.
In this study, we have investigated effects of volatile anesthetics on absorption spectra, proton pumping activity and decay of photointermediate M of bacteriorhodopsin (bR) in differently aggregated states. Anesthetics used in this study are ether-type general anesthetics; enflurane and sevoflurane. The observed effects on bR depend not only on variety or concentration of anesthetics but also strongly on the aggregation state of bR molecules in the membrane. In purple membrane (PM), bR having maximum light absorption at 567 nm (bR567) is formed in the presence of sevoflurane or a small amount of enflurane, while a species absorbing maximally at 480 nm (bR480) is formed upon the addition of large amounts of enflurane. X-ray diffraction studies show that the former species maintains crystallinity of PM, but the latter does not. In reconstituted vesicles where bR molecules exist as monomer, even sevoflurane forms bR480. Flash photolysis experiments show that bR567 contains a shorter-lived M intermediate absorbing maximally at 412 nm in the photoreaction cycle than bR does and that bR480 contains at least two long-lived M intermediates which seem to absorb maximally near and at lower than 380 nm. The measurements of light-induced pH changes of the whole cells and of the reconstituted vesicles in the presence of the anesthetics indicate that bR567 has a enhanced proton pumping efficiency, while bR480 has a quite low or no activity. No significant difference was observed in the anesthetic action between two inversely pumping vesicles. These observations suggest that on the formation of bR480, anesthetics enter into the membrane and affect the protein-lipid interaction.  相似文献   

11.
Divalent cations are involved in the function of bacteriorhodopsin (bR) as a light-driven proton pump. If cations are removed from purple membranes they become blue. Divalent cations such as Ca2+ or Pb2+ or trivalent ions, can be stoichiometrically titrated back on to these deionized membranes. The color transitions as a function of ion concentration for Ca2+ or Pb2+ are precisely comparable and indicate that approximately three stoichiometric equivalents of cations are required to effect the color transition (Kimura et al., 1984). We found four main partially occupied binding sites for cations at a stoichiometric ratio of 3 Pb2+/bR. We localized the binding sites for Pb2+ using x-ray diffraction of membranes reconstituted with 1, 2, and 3 equivalents of Pb2+ per bR. The site of highest affinity is located on helix 7. At 2 Pb2+/bR, sites on helix 6 and between helix 2 and 3 are occupied. At 3 Pb2+/bR a fourth site above helix 3 is occupied.  相似文献   

12.
The red shift in the absorption maximum of native purple membrane suspensions caused by deionization is missing in lipid-depleted purple membrane, and the pK of the acid-induced transition is down-shifted to pH approximately 1.4 and has become independent of cation concentration (Szundi, I., and W. Stoeckenius. 1987. Proc. Natl. Acad. Sci. USA. 84:3681-3684). However, the proton pumping function cannot be demonstrated in these membranes. When native acidic lipids of purple membrane are exchanged for egg phosphatidylcholine or digalactosyldiglyceride, bacteriorhodopsin is functionally active in the modified membrane. It shows spectral shifts upon light-dark adaptation, a photocycle with M-intermediate and complex decay kinetics; when reconstituted into vesicles with the same neutral lipids, it pumps protons. Unlike native purple membrane, lipid-substituted modified membranes do not show a shift of the absorption maximum to longer wavelength upon deionization. A partial shift can be induced by titration with HCl; it has a pK near 1.5 and no significant salt dependence. Titration with HNO3 and H2SO4, which causes a complete transition in the lipid-depleted membranes, i.e., it changes their colors from purple to blue, does not cause the complete transition in the lipid-substituted preparations. These results show that the purple color of bacteriorhodopsin is independent of cations and their role in the purple-to-blue transition of native membranes is indirect. The purple and blue colors of bacteriorhodopsin are interpreted as two conformational states of the protein, rather than different protonation states of a counterion to the protonated Schiff base.  相似文献   

13.
The contribution of proton release from the so-called proton release group to the microsecond B2 photocurrent from bacteriorhodopsin (bR) oriented in polyacrylamide gels was determined. The fraction of the B2 current due to proton release was resolved by titration of the proton release group in M. At pH values below the pKa of the proton release group in M, the proton release group cannot release its proton during the first half of the bacteriorhodopsin photocycle. At these pH values, the B2 photocurrent is due primarily to translocation of the Schiff base proton to Asp85. The B2 photocurrent was measured in wild-type bR gels at pH 4.5-7.5, in 100 mM KCl/50 mM phosphate. The B2 photocurrent area (proportional to the amount of charge moved) exhibits a pH dependence with a pKa of 6.1. This is suggested to be the pKa of the proton release group in M; the value obtained is in good agreement with previous results obtained by examining photocycle kinetics and pH-sensitive dye signals. In the mutant Glu204Gln, the B2 photocurrent of the mutant membranes was pH independent between pH 4 and 7. Because the proton release group is incapacitated, and early proton release is eliminated in the Glu204Gln mutant, this supports the idea that the pH dependence of the B2 photocurrent in the wild type reflects the titration of the proton release group. In wild-type bacteriorhodopsin, proton release contributes approximately half of the B2 area at pH 7.5. The B2 area in the Glu204Gln mutant is similar to that in the wild type at pH 4.5; in both cases, the B2 current is likely due only to movement of the Schiff base proton to Asp85.  相似文献   

14.
The dependence of the bacteriorhodopsin (bR) photocycle on the intensity of the exciting flash was investigated in purple membranes. The dependence was most pronounced at slightly alkaline pH values. A comparison study of the kinetics of the photocycle and proton uptake at different intensities of the flash suggested that there exist two parallel photocycles in purple membranes at a high intensity of the flash. The photocycle of excited bR in a trimer with the two other bR molecules nonexcited is characterized by an almost irreversible M --> N transition. Excitation of two or three bR in a trimer induces the N --> M back reaction and accelerates the N --> bR transition. Based on the qualitative similarity of the pH dependencies of the photocycles of solubilized bR and excited dimers and trimers we proposed that the interaction of nonexcited bR in trimers alters the photocycle of the excited monomer as compared to solubilized bR and the changes in the photocycles in excited dimers and trimers are the result of decoupling of this interaction.  相似文献   

15.
The difference in the surface charge distribution between light-adapted and dark-adapted purple membranes was investigated with electric dichroism measurements from approximately pH 5 to pH 11. Purple membrane sheets in solution are oriented in a weak electric field by their permanent dipole moment, which is due to the charge distribution of the membrane surfaces and/or within the membrane. The degree of orientation of purple membrane sheets was obtained from the measurement of “electrical anisotropy” of retinal chromophore in the membranes. At about pH 7, there was no difference in the “electric anisotropy” between light- and dark-adapted purple membranes. At about pH 9, the electric anisotropy of dark-adapted purple membrane was larger than that of light-adapted purple membrane. But at around pH 6 the difference was opposite. Linear dichroism experiments did not show any change of retinal tilt angle with respect to the membrane normal between the two forms from approximately pH 5 to pH 10. This result indicates that the changes in the “electric anisotropy” are not due to the change of retinal tilt angle, but due to the change in the permanent dipole moment of the membrane. To estimate the change in surface charges from the permanent dipole moment, we investigated the difference of the permanent dipole moment between the native purple membrane and papain-treated purple membrane in which negative charges in the cytoplasmic-terminal part are removed. This estimation suggests that this light-dark difference at around pH 9 can be accounted for by a change of ~0.5 electric charge per bacteriorhodopsin (bR) molecule at either of the two surfaces of the membrane. We also found from pH electrode measurements that at about pH 8 or 9 light adaptation was accompanied by an uptake of ~0.1 protons per bR. A possible movement of protons during light-dark adaptation is discussed. The direction of the permanent dipole moment does not change with papain treatment. The permanent dipole moment in papain-treated purple membrane is estimated to be 27 ±2 debye/bR.  相似文献   

16.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

17.
The effect of lipid-protein interaction on the photodynamics of bacteriorhodopsin (bR) was investigated by using partially delipidated purple membrane (pm). When pm was incubated with a mild detergent, Tween 20, the two major lipid components of pm, phospholipids and glycolipids, were released in different ways: the amount of phospholipids released was proportional to the logarithm of the incubation time; the release of glycolipids became noticeable after the release of approximately 2 phospholipids/bR, but soon leveled off at approximately 50% of the initial content. It was found that the thermal decay of the photocycle intermediate N560 was inhibited by the removal of less than 2 phospholipids per bR. This inhibition was partly explained by an increase in the local pH near the membrane surface. More significant changes in the bR photoreactions were observed when greater than 2 phospholipids/bR were removed: (1) the extent of light adaptation became much smaller, and this reduction correlated with the release of glycolipids; (2) N560 became difficult to detect; (3) the M412 intermediate, which is characterized by a pH-insensitive lifetime, was replaced by a long-lived M-like photoproduct with a pH-sensitive lifetime. The heavy delipidation apparently altered the mechanism by which the deprotonated Schiff base receives a proton. An important conformational change in the protein moiety is suggested to take place during the M412 state, this conformational change being inhibited in the rigid lipid environment.  相似文献   

18.
The expression of membrane proteins for functional and structural studies or medicinal applications is still not very well established. Membrane-spanning proteins that mediate the information flow of the extracellular side with the interior of the cell are prime targets for drug development methods that would allow screening techniques or high throughput formats are of particular interest. Here we describe a systematic approach to the liposome-assisted cell-free synthesis of functional membrane proteins. We demonstrate the synthesis of bacteriorhodopsin (bR(cf)) in presence of small unilamellar liposomes. The yield of bR(cf) per volume cell culture is comparable to that of bacteriorhodopsin in its native host. The functional analysis of bR(cf) was performed directly using the cell-free reaction mixture. Photocycle measurements reveal kinetic data similar to that determined for bR in Halobacterium salinarum cell-envelope vesicles. The liposomes can be attached directly to black lipid membranes (BLM), which allows measuring light activated photocurrents in situ. The results reveal a functional proton pump with properties identical to those established for the native protein.  相似文献   

19.
Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  相似文献   

20.
We have used flash spectroscopy and pH indicator dyes to measure the kinetics and stoichiometry of light-induced proton release and uptake by purple membrane in aqueous suspension, in cell envelope vesicles and in lipid vesicles. The preferential orientation of bacteriorhodopsin in opposite directions in the envelope and lipid vesicles allows us to show that uptake of protons occurs on the cytoplasmic side of the purple membrane and release on the exterior side.

In suspensions of isolated purple membrane, approximately one proton per cycling bacteriorhodopsin molecule appears transiently in the aqueous phase with a half-rise time of 0.8 ms and a half-decay time of 5.4 ms at 21 °C.

In cell envelope preparations which consist of vesicles with a preferential orientation of purple membrane, as in whole cells, and which pump protons out, the acidification of the medium has a half-rise time of less than 1.0 ms, which partially relaxes in approx. 10 ms and fully relaxes after many seconds.

Phospholipid vesicles, which contain bacteriorhodopsin preferentially oriented in the opposite direction and pump protons in, show an alkalinization of the medium with a time constant of approximately 10 ms, preceded by a much smaller and faster acidification. The alkalinization relaxes over many seconds.

The initial fast acidification in the lipid vesicles and the fast relaxation in the envelope vesicles are accounted for by the misoriented fractions of bacteriorhodopsin. The time constants of the main effects, acidification in the envelopes and alkalinization in the lipid vesicles correlate with the time constants for the release and uptake of protons in the isolated purple membrane, and therefore show that these must occur on the outer and inner surface respectively. The slow relaxation processes in the time range of several seconds must be attributed to the passive back diffusion of protons through the vesicle membrane.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号