首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has shown that the yeast histone H4 N-terminus, while not essential for viability, is required for repression of the silent mating loci and activation of GAL1 and PHO5 promoters. Because histone H3 shares many structural features with histone H4 and is intimately associated with H4 in the assembled nucleosome, we asked whether H3 has similar functions. While the basic N-terminal domain of H3 is found to be non-essential (deletion of residues 4-40 of this 135 amino acid protein allows viability), its removal has only a minor effect on mating. Surprisingly, both deletions (of residues 4-15) and acetylation site substitutions (at residues 9, 14 and 18) within the N-terminus of H3 allow hyperactivation of the GAL1 promoter as well as a number of other GAL4-regulated genes including GAL2, GAL7 and GAL10. To a limited extent glucose repression is also alleviated by H3 N-terminal deletions. Expression of another inducible promoter, PHO5, is shown to be relatively unaffected. We conclude that the H3 and H4 N-termini have different functions in both the repression of the silent mating loci and in the regulation of GAL1.  相似文献   

2.
3.
Nucleosome loss activates yeast downstream promoters in vivo   总被引:48,自引:0,他引:48  
M Han  M Grunstein 《Cell》1988,55(6):1137-1145
  相似文献   

4.
5.
6.
7.
The chromatin elements targeted by the ATPdependent, Swi-Snf nucleosome-remodeling complex are unknown. To address this question, we generated mutations in yeast histone H2B that suppress phenotypes associated with the absence of Swi-Snf. Sin- (Swi-Snf-independent) mutations occur in residues involved in H2A-H2B dimer formation, dimer- tetramer association, and in the H2B N-terminus. The strongest and most pleiotropic Sin- mutation removed 20 amino acid residues from the H2B N-terminus. This mutation allowed active chromatin to be formed at the SUC2 locus in a snf5Delta mutant and resulted in hyperactivated levels of SUC2 mRNA under inducing conditions. Thus, the H2B N-terminus may be an important target of Swi-Snf in vivo. The GCN5 gene product, the catalytic subunit of several nuclear histone acetytransferase complexes that modify histone N-termini, was also found to act in conjunction with Swi-Snf. The phenotypes of double gcn5Deltasnf5Delta mutants suggest that histone acetylation may play both positive and negative roles in the activity of the Swi-Snf-remodeling factor.  相似文献   

8.
9.
10.
11.
Yeast histone H4 function was probed in vivo by deleting segments of this extremely conserved 102 amino acid protein. Deletions in the hydrophobic core of H4 are lethal and block chromosomal segregation. In contrast, deletions at the hydrophilic N terminus (residues 4-28) and C terminus (residues 100-102) are viable. However, N-terminal deletion alters normal chromatin structure and lengthens the cell cycle, especially G2. Surprisingly, removal of the H4 N terminus also derepresses the silent mating type loci, HML alpha and HMRa, disrupting mating. This activation is specific since other regulated genes (GAL10, PHO5, CUP1) are repressed and induced normally in these cells. Deletions of the hydrophilic N termini of H2A or H2B do not show this effect on mating. These experiments allow us to define a unique H4 function that is not shared by other histones (H2A and H2B).  相似文献   

12.
13.
14.
15.
16.
We have shown previously that a stretch of four charged residues (16-19) at the histone H4 N-terminus is involved in repression of the yeast silent mating loci. One of these residues, Lys16, is a site for acetylation, which may prevent repression of the silent mating loci. In this paper we ask whether other sequences in histone H4, possibly in conjunction with H3 residues, are required for repression. We find that even in combination, the other seven acetylatable lysines in H3 and H4 do not function in repression. In contrast, we have found that an adjacent relatively uncharged domain (residues 21-29) is required for repression and that single amino acid insertions and deletions in this region are extremely detrimental. We propose that the basic and non-basic domains together form a DNA (or protein) induced amphipathic alpha-helix required in the formation of a repressive chromatin structure.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号