首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Two-mile reef, Sodwana, South Africa is an unusual coral reef, being situated on a submerged fossilized sand dune and being very southerly (27°54). It is a popular Scuba diving venue receiving about 100000 dives year–1. The line-intercept transect method, as recommended by the global coral reef monitoring network (GCRMN), was used to determine soft coral, hard coral and other benthos percentage cover. Physical coral damage, disease and bleaching were also recorded. Results were compared with those of B. Riegl (1993 – unpublished PhD thesis) 5 to 7 years earlier. The reef appears to be ecologically and highly dynamic. In the interim, there has been an increase in living benthos cover of 22.3% but also an increase in coral bleaching from 0% in 1993 to 1% in 1998. Physical damage, despite the large number of dives on the reef was minimal (1.52%), although it appears as if coral diseases may be increasing. The 20-m transects recommended by GCRMN are too long for this highly rugose reef with its distinct ridges and gullies. It is recommended that benthos cover, coral damage, bleaching and disease should be monitored annually using 40 5-m transects on the reef ridges and 40 5-m transects on the reef slopes.  相似文献   

2.
A rapid benthic line-transect survey method for use by non-specialist observers is described. At both Davies Reef (mid-continental shelf) and Myrmidon Reef (outer-continental shelf) in the central Great Barrier Reef a set of 6 sites of varying depths on the reef flat, crest and slope were sampled using this method. At least 10 contiguous 10 m transects were made at each site. Benthic organisms were recorded as life forms with categories based on both high level taxa and morphologies, and including scleractinian corals, alcyonarians, sponges, algae and others. Percentage cover data for 19 benthic categories are presented for all sites. Coral cover on both reefs is high on the crest and slope but low on the reef flat. At all sites the cover of soft corals and sponges is much less than cover of hard corals and algae. Abundances of soft corals and sponges increase with depth. Analysis of gaps between hard corals show that many colonies grow close to each other (<1 cm)even when total coral cover is low.  相似文献   

3.
Three methods of evaluating stony coral communities were used on selected reefs in the Exuma Cays Land and Sea Park (24°22N, 77°30W) in the central Bahamas. Shallow reefs (< 4 meters depth) were selected from aerial surveys based on size, location, and physical setting, and grouped into three community types: (1) channel patch reefs, (2) soft-coral-sponge patch reefs and (3) fringing reefs. Three survey techniques used to evaluate the stony coral communities were a) species presence and absence lists, b) linear percentage and c) line transects using 1 mx1 m grids. Data collected from these survey methods was used to calculate coral colony density, species area coverage, and species diversity based on colony number and based on linear (cm) coral cover. The linear percentage sampling was considered too convervative in determining distribution patterns of a reef community; this technique takes into account the massive reef framework species such asM. annularis. The line transect technique can account for both colony number and area coverage, thus is a better method for characterizing reef communities. Sample size considerations are discussed for future applications of survey techniques for ground-truthing digital images of small, shallow reef communities.  相似文献   

4.
 The distribution and abundance of soft coral genera on reefs of the central Great Barrier Reef was investigated in relation to reef position, recent history of disturbance, wave exposure, substratum slope and depth. Eighty-five 25 m long transects were surveyed at 10 m depth on windward sides of 14 mid- and outer-shelf reefs. A further 75 transects in different zones on one mid-shelf reef (Davies Reef) between 5 and 30 m depth were investigated. The crown-of-thorns starfish Acanthaster planci had caused large-scale mortality of scleractinians on eight of these reefs five to ten years prior to the study, and as a result, scleractinian cover was only 35–55% of that on the six unimpacted reefs. On the impacted reefs, stony corals with massive and encrusting growths form had smaller average colony diameters but similar or slightly lower numerical abundance. In contrast, mean colony size, cover and abundance of branching stony corals showed no difference between impacted and unimpacted reefs. Twenty-four genera of soft corals (in eight families) were recorded, and none showed different abundance or cover in areas of former A. planci impact, compared to unaffected sites. Similarly, no difference was detected among locations in the numbers or area cover of sponges, tunicates, zoanthids, Halimeda or other macro-algae. Mean soft coral cover was 2 to 5% at 10 m on sheltered mid-shelf reefs, and 12 to 17% on more current-exposed reefs. Highest cover and abundances generally occurred on platforms of outer-shelf reefs exposed to relatively strong currents but low wave energy. On Davies Reef, cover and colony numbers of the families Nephtheidae and Xeniidae were low within the zone of wave impact, in flow-protected bays and lagoons, on shaded steep slopes, and at depths above 10 and below 25 m. In contrast, distributions of genera of the family Alcyoniidae were not related to these physical parameters. The physical conditions of a large proportion of habitats appear “sub-optimal” for the fastest growing taxa, possibly preventing an invasion of the cleared space. Thus, in the absence of additional stress these shallow-water fore-reef zones appear sufficiently resilient to return to their pre-outbreak state of scleractinian dominance. Accepted: 20 August 1996  相似文献   

5.
 Coral reef communities of the western Atlantic have changed over the past two to three decades, but the magnitude and causes of this change remain controversial. Part of the problem is that small-scale patterns observed on individual reefs have been erroneously extrapolated to landscape and geographic scales. Understanding how reef coral assemblages vary through space is an essential prerequisite to devising sampling strategies to track the dynamics of coral reefs through time. In this paper we quantify variation in the cover of hard corals in spur-and-groove habitats (13–19 m depth) at spatial scales spanning five orders of magnitude along the Florida Reef Tract. A videographic sampling program was conducted to estimate variances in coral cover at the following hierarchical levels and corresponding spatial scales: (1) among transects within sites (0.01- to 0.1-km scale), (2) among sites within reefs (0.5- to 2-km scale), (3) among reefs within sectors of the reef tract (10- to 20-km scale), and (4) among sectors of the reef tract (50- to 100-km scale). Coral cover displayed low variability among transects within sites and among sites within reefs. This means that transects from a site adequately represented the variability of the spur-and-groove habitat of the reef as a whole. Variability among reefs within sectors was highly significant, compared with marginally significant variability among sectors. Estimates from an individual reef, therefore, did not adequately characterize nearby reefs, nor did those estimates sufficiently represent variability at the scale of the sector. The structure and composition of coral reef communities is probably determined by the interaction of multiple forcing functions operating on a variety of scales. Hierarchical analyses of coral assemblages from other geographic locations have detected high variability at scales different from those in the present study. A multiscale analysis should, therefore, precede any management decisions regarding large reef systems such as the Florida Reef Tract. Accepted: 19 July 1999  相似文献   

6.
Middle Reef is an inshore turbid zone reef located 4 km offshore from Townsville, Queensland, Australia. The reef consists of four current-aligned, interconnected reef patches that have reached sea level and formed reef flats. It is regularly exposed to high turbidity (up to 50 mg l−1) generated by wave-driven sediment resuspension or by episodic flood plumes. Middle Reef has a high mean hard coral cover (>39%), relatively low mean macro-algal cover (<15%) and a coral community comprising at least 81 hard coral species. Cluster analysis differentiated six benthic communities which were mapped onto the geomorphological structure of the reef to reveal a spatially patchy community mosaic that reflects hydrodynamic and sediment redistribution processes. Coral cover data collected annually from windward slope transects since 1993 show that coral cover has increased over the last ~15 years despite a history of episodic mortality events. Although episodic mortality may be interpreted as an indication of marginality, over decadal timescales, Middle Reef has recovered rapidly following mortality events and is clearly a resilient coral reef.  相似文献   

7.
Damage caused by catastrophic storm waves and subsequent recovery was investigated with a series of 15 line transects on a reef off the west coast of Hawaii over a 20-year period (1973–1993). At the initiation of the study, four zones existed across the reef, each defined by a different dominant coral species. An intermediate intensity storm in 1974 caused a decrease in coral cover from 52% to 46% of bottom cover, while breakage and transport of fragments extended the depth of peak coral cover. In 1980, a Kona storm, which generated the largest storm surf on record, destroyed the coral zonation pattern almost entirely. Living coral was reduced from 46% to 10% of bottom cover, with greatest damage in the zones with highest cover. Twelve years later (1992), living coral cover increased to 15% of total bottom cover. Lack of significant correlation between increase of coral cover and initial cover indicated that recovery was from larval settlement, rather than regeneration of viable fragments. Extrapolation of recovery from 1980 to 1992 indicates that the pre-storm (1973) conditions would be reached in 40 years (exponential growth) to 70 years (linear growth). In 1993, following a hurricane and unusually large northwest swell, coral cover was once again reduced to 11%; recovery was set back to a level similar to that in 1980 following the Kona storm. In 1992 and 1993 no evidence of CaCO3 accretion was observed on the reef bench. Rubble fragments created by storm stress were deposited on the reef slope with little subsequent lithification. While hurricane force waves may occur very infrequently in Hawaii, this source of stress appears to effectively limit Holocene reef growth in all areas except sheltered embayments. The pattern of damage and recovery of this coral ecosystem conforms to the intermediate disturbance hypothesis, in which storms of intermediate intensity produce either an increase or decrease in diversity and cover, depending on the timing of severe storms. On a global scale, timescales of damage and recovery cycles vary substantially depending on the frequency of severe disturbances, and the adaptive capabilities of dominant species.School of Ocean and Earth Science and Technology Contribution No. 3293  相似文献   

8.
Bioerosion experiments at Lizard Island,Great Barrier Reef   总被引:5,自引:0,他引:5  
The rates at which dead coral substrates are modified by bioerosional processes were determined by exposing recently killed corals for up to four years in a variety of reef environments at Lizard Island (northern Great Barrier Reef). Grazers were the major croding agents of these coral substrates and exhibited differences between sites that varied between sampling periods. Subtidal reef slopes and lagoon environments of water depths < 20 m were subjected to higher average rates of grazing erosion (0.30–1.96 kg/m2/y) than shallow depths less than 1 m (0.07–0.26 kg/m2/y). A deep site at 20 m experienced low average rates of grazing (0.08–0.29 kg/m2/y). Boring rates by worms (polychaetes and sipunculans), sponges and molluscs were relatively low and varied between sites, but increased with length of sampling period as larger borers succeeded the initial colonizing small polychaete worms. We hypothesize from these experiments that the extent of boring in reef substrates will be influenced by the interaction between the succession of the boring community and the rate at which the substrate is destroyed by grazing. We suggest that the level of grazing modifies the successional pattern of borers by removing the surface substrate and continually exposing bare substrate that can be colonized by early boring colonists. Thus, constant high levels of grazing may maintain the boring community at an early successional stage and prevent the development of a mature boring community. In order to establish large borer populations, reef substrates must be protected from extensive grazing bioerosion. This interaction of grazing and boring has important implications for the way dead coral is preserved in different reef environments.  相似文献   

9.
Photographic line transects were used to quantify the benthic community at Hall Bank, a small, nearshore, high-latitude reef in south-west Australia. On one of the seven transects, the coral cover was 72.5% (mean = 52.6 ± 0.45%), which is the highest ever recorded coral cover at or beyond 32°S. There were no macro-algae, possibly due to the high density of herbivorous sea-urchins (mean = 5.0 ± 0.8 m−2). Fourteen species of scleractinian corals dominated the benthos, seven of which were from the family Faviidae. Given that Hall Bank is at the limit of environmental tolerance for reef formation, it represents a valuable research opportunity for understanding the factors that build and maintain coral reef biodiversity and resilience.  相似文献   

10.
The deep fore-reef at Enewetak has been examined from the submersible Makali'i. Green algae grow to about-150 m at photon flux densities of approximately 1 Em-2s-1. Halimeda cover is 50% at many sites down to-90 m. Halimeda populations are important within the zone of scleractinian corals down to about-65 m, while a Halimeda zone with low coral cover or lacking corals between-65 m and-150 m probably is an important source of reef carbonate. Halimedas of the deep fore-reef, like those of the lagoon, constitute an important structural component in reef building. Other calcareous green algae such as Tydemania are less important on the deep fore-reef, but growth of coralline red algae continues to over-200m. Halimeda diversity is high down to near the base of the euphotic zone.  相似文献   

11.
High islands, with potentially greater habitat diversity, are expected to have greater species richness and diversity compared to low islands, typically atolls and coral islands of lower habitat diversity, within the same geographical area. Patterns of species similarity, richness, and diversity were compared among coral reef fishes between the low island of the Southwest Palau Islands (SWPI), and the low and high islands of the Main Palauan Archipelago (MPA). Data from diurnal visual transects accounted for approximately 64% and 69% of the shorefish faunas known from the SWPI and MPA, respectively. Two distinct fish faunas were representative of low and high islands. The first was confined to the coral islands of the SWPI. The second was partitioned into both low and high islands of the MPA, and Helen Reef, a large atoll in the SWPI. The second type was clustered into atolls, low islands with atoll-like barrier reef systems, a coral island, and three high island systems, one with an extensive barrier reef system. Contrary to the prediction that high islands, with relatively greater habitat diversity, would have greater species richness and diversity, species richness and diversity were greatest at Kossol, a large atoll-like low island locality at the northern end of a high island in the MPA, followed by two atolls, Kayangel (MPA, north of Kossol) and Helen Reef. In contrast, species richness and diversity were lower at high island localities and lowest at small coral islands. These results suggest that habitat diversity for reef fishes increases as a function of increasing area regardless of whether the locality is a high or low island.  相似文献   

12.
In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has > 50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annularis. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (+/- 0.04 SD) to 1.74% (+/- 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.  相似文献   

13.
Monitoring of coral reefs has become a major tool for understanding how they are changing, and for managing them in a context of increasing degradation of coastal ecosystems. The Global Coral Reef Monitoring Network (GCRMN) has near-global coverage, but there are few remote sites free of direct human impact that can serve as reference sites. This study provides baseline data for the French Iles Eparses in the Mozambique Channel, Western Indian Ocean (WIO), whose coral reefs are little known owing to their limited accessibility, and have been free from fishing pressure for over 20 years. Surveys of coral reef health and fish community structure were undertaken at four of the islands (Europa, Bassas da India, Juan de Nova and Glorieuses) in 2011–2013. Monitoring was conducted using standardized GCRMN methods for benthos and fish communities, at the highest taxonomic level. Benthic cover showed a latitudinal gradient, with higher coral cover and conversely lower algae cover (60% and 14% respectively) in the south of the Mozambique Channel. This could be due to the geomorphology of the islands, the latitudinal temperature gradient, and/or the history of chronic stress and bleaching events during the last decades. Fish also showed a latitudinal gradient with higher diversity in the north, in a center of diversity for the western Indian Ocean already recognized for corals. An exceptional biomass fish was recorded (approximately 3500 kg/ha excluding sharks, compared to a maximum of 1400 kg/ha elsewhere in the WIO). The presence of large predators and sharks in all the islands as well as the absence of fleshy benthic algae were indicators of the good health of the reef systems. Nevertheless, these islands are beginning to experience illegal fishing, particularly in the north of the Mozambique Channel, demonstrating their vulnerability to exploitation and the need to protect them as reference sites for coral reef studies, including of climate change impacts, for the region and globally.  相似文献   

14.
The dynamics of benthic microbial communities were examined within different functional zones (reef crest, reef flat, lagoon) of Davies Reef, central Great Barrier Reef, in winter. Bacterial numbers did not change significantly across the reef with a mean abundance of 1.3 (±0.6) x 109 cells g-1 DW of sediment. Bacterial production, measured as thymidine incorporation into DNA, ranged from 1.2 (±0.2) to 11.6 (±1.5) mg C m-2h-1 across the reef and was significantly lower in a reef crest basin than in the other zones. Bacterial growth rates () across the reef (0.05 to 0.33 g-1) correlated only with sediment organic carbon and nitrogen. Protozoan and meiofaunal densities varied by an order of magnitude across the reef and correlated with one or more sediment variables but not with bacterial numbers or growth rates. Nutrient flux rates were similar to those found at other reefs in the central and southern Great Barrier Reef and are significantly lower than rates measured in temperate sand communities. In the front lagoon, bioturbation and feeding acitivity by thalassinid shrimps (Callianassa spp.) negatively influenced microbial and meiofaunal communities with a net import of organic matter necessary to support the estimated rates of bacterial productivity. In lagoonal areas not colonized by shrimps, primary productivity (400–1100 mg C m-2d-1) from algal mats was sufficient to support bacterial growth. It is suggested that deposit-feeding macrobenthos such as thalassinid crustaceans play a major role in the tructuring and functioning of lower trophic groups (bacteria, microalgae, protozoa, meiofauna) in coral reef sedments, particularly in laggons.  相似文献   

15.
Coral-grounds are reef communities that colonize rocky substratum but do not form framework or three-dimensional reef structures. To investigate why, we used video transects and underwater photography to determine the composition, structure and status of a coral-ground community located on the edge of a rocky terrace in front of a tourist park, Xcaret, in the northern Mesoamerican Reef tract, Mexico. The community has a relatively low coral, gorgonian and sponge cover (<10%) and high algal cover (>40%). We recorded 23 species of Scleractinia, 14 species of Gorgonacea and 30 species of Porifera. The coral community is diverse but lacks large coral colonies, being dominated instead by small, sediment-tolerant, and brooding species. In these small colonies, the abundance of potentially lethal interactions and partial mortality is high but decreases when colonies are larger than 40 cm. Such characteristics are consistent with an environment control whereby storm waves periodically remove larger colonies and elevate sediment flux. The community only survives these storm conditions due to its slope-break location, which ensures lack of burial and continued local recruitment. A comparison with similar coral-ground communities in adjacent areas suggests that the narrow width of the rock terrace hinders sediment stabilization, thereby ensuring that communities cannot escape bottom effects and develop into three-dimensional reef structures on geological time scales.  相似文献   

16.
Coral and sandstone reefs cover a significant part ofSri Lanka‘s continental shelf and contain incomparison unique reef structures. Despite this, reefsin this region of the northern Indian Ocean havereceived little research attention. In an attempt tobetter understand these ecosystems and their innatecharacter, this study describes the variety of reeftypes and habitats that are found in this area. Thestudy concentrated on four major reef areas: the BarReef Marine Sanctuary (BRMS), Kandakuliya Reefs,Talawila Reef, and Mampuri Reef. These reefs showedapparent differences in habitat structure in terms ofthe proportion coral cover, coral species compositionand structural complexity. Two reef types were presentwithin the continental shelf of BRMS: coral andsandstone patch-reefs. Acropora was the mostdominant coral genera however in total 118madreporarian species and 50 coral genera wererecorded in the sanctuary. Distinct habitats wereidentified within reef types including shallow reefflat, shallow patch reef, deep reef flat and Porites dome habitats for the coral-reef patcheswhile the sandstone-reef patches were divided intostructured and flat sandstone reef habitats.Kandakuliya Reef south of BRMS was by large dominatedby coral rubble. Talawila Reef and Mampuri Reef showedunique structures with the former being dominated bymassive corals and the latter mainly containingsandstone structures. In addition to factors such asbio-erosion, sedimentation, hydrodynamics, andrecruitment or colonisation processes, some reefs wereclearly under significant direct human impact whichappeared to play a dominant role in habitatstructuring. However, type and degree of humandisturbance varied among the reefs. Habitat alterationat Kandakuliya Reef was the result of intense fishingusing destructive fishing methods. Talawila Reef andMampuri Reef was also influenced by fishing activitiesthough reef structure seemed less affected. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Disturbances have played major roles in shaping community structurein Great Barrier Reef coral communities in the period 1980–90.Major causes of coral death have been a coral bleaching episodein 1982, predation by crown of thorn starfish Acanthaster planci,and cyclone damage. A series of 30 permanent photo-transectswas established on six reefs on the Great Barrier Reef in 1979–80.This is a very small sample, but nearly all transects were affectedby one or other of these disturbances early in the decade. Thechanges are summarised as transitions among five stages identifiedin a model incorporating "normal" and "abnormal" patch dynamicsof coral communities. The major disturbances of bleaching, crownof thorns and cyclones tend to cause high coral mortality overlarge areas, but nevertheless it was surprising that such alarge proportion of photo-transects was affected. By the endof the decade, none of the damaged transects had "recovered,"in terms of percentage coral cover or numbers of new colonies.Photo-transects and visual surveys showed sites deeper than3 m had particularly poor recovery. Hydrodynamic models predictconsiderable patchiness in larval availability, an essentialprecursor for coral recolonization.  相似文献   

18.

Reef monitoring programmes often focus on limited sites, predominantly on reef slope areas, which do not capture compositional variability across zones. This study assessed spatial and temporal changes in hard coral cover at four hierarchical spatial scales. ~ 55,000, geo-referenced photoquadrats were collected annually from 2002 to 2018 and analysed using artificial intelligence for 31 sites across reef flat and reef slope zones on Heron Reef, Southern Great Barrier Reef, Australia. Trends in hard coral cover were examined at three spatial scales: (1) “reef scale”, all data; (2) “geomorphic zone scale”—north/south reef slope, inner/outer reef flat; and (3) “site scale”—31 sites. Coral cover trajectories were also examined at: (4) “sub-site scale”—sub-division of sites into 567 sub-sites, to estimate variability in coral cover trajectories via spatial statistical modelling. At reef scale coral cover increased over time to 25.6 ± 0.4 SE % in 2018 but did not recover following disturbances caused by disease (2004–2008), cyclonic conditions (2009) or severe storms (2015) to the observed pre-disturbance level (44.0 ± 0.7 SE %) seen in 2004. At geomorphic zone scale, the reef slope had significantly higher coral cover than the reef flat. Trends of decline and increase were visible in the slope zones, and the southern slope recovered to pre-decline levels. Variable coral cover trends were visible at site scale. Furthermore, sub-site spatial modelling captured eight years of coral recovery that occurred at different times and magnitudes across the four geomorphic zones, effectively estimating variability in the trajectory of the reef’s coral community. Derived spatial predictions for the entire reef show patchy coral recovery, particularly on the southern slope, and that recovery hotspots are distributed across the reef. These findings suggest that to fully understand and interpret coral decline or recovery on a reef, more accurate assessment can be achieved by examining sites distributed within different geomorphic zones to capture variation in exposure, depth and consolidation.

  相似文献   

19.

Aim

Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef.

Location

Great Barrier Reef, Australia.

Methods

Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR.

Results

Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs.

Main Conclusion

Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change.  相似文献   

20.
Water movement through the framework of Davies Reef, a coral reef in the central Australian Great Barrier Reef, was studied using field and laboratory determinations of permeability, tide gauge measurements of water levels, dye tracers, and pore water chemistry. Flow is driven by current, wind-induced, or tide-induced water level differences which were shown to occur between reef front and lagoon. The reef is hydraulically very heterogeneous with bulk flow occurring through high permeability zones (voids and rubble) at a velocity on the order of 10 m/d. Pore water exchange in less permeable zones occurs at a much slower rate. Vertical components of flow are significant. Chemical data indicate that carbonate precipitation and solution occur so that porosities, permeabilities, and flow paths may change with time. Implications for nutrient transfer through the benthic sediments and for fresh water resources on reef islands are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号