首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions between loratadine and bovine serum albumin (BSA) and human serum albumin (HSA) were studied using tryptophan fluorescence quenching method. The fluorescence intensity of the two serum albumins could be quenched 70% at the molar ratio [loratadine]:[BSA (or HSA)] = 10:1. In the linear range (0–50 μmol L 1) quenching constants were calculated using Stern–Volmer equation. Temperature in the range 298 K–310 K had a significant effect (p < 0.05) on the two serum albumins through ANOVA analysis and t-test. Furthermore the conformation changes in the interactions were studied using FTIR spectroscopy.  相似文献   

2.
The interaction between cromolyn sodium (CS) and human serum albumin (HSA) was investigated using tryptophan fluorescence quenching. In the discussion of the mechanism, it was proved that the fluorescence quenching of HSA by CS is a result of the formation of a CS–HSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measure of the binding affinity between CS and HSA. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated. The distance r between donor (Trp214) and acceptor (CS) was obtained according to fluorescence resonance energy transfer (FRET). Furthermore, synchronous fluorescence spectroscopy data and UV–vis absorbance spectra have suggested that the association between CS and HSA changed the molecular conformation of HSA and the electrostatic interactions play a major role in CS–HSA association.  相似文献   

3.
Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB–HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92–6.89?×?103?M?1 at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB–HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J?mol?1 K?1) and negative ΔH (?6.57?kJ?mol?1) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB–HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow’s site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca2+, Zn2+, Cu2+, Ba2+, Mg2+, and Mn2+ in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.  相似文献   

4.
The fluorescence quenching spectrum of bovine serum albumin (BSA) was investigated in the presence of felodipine (FLD) by spectroscopic methods including fluorescence spectroscopy and UV–Vis absorption spectroscopy. Stern–Volmer quenching was successfully applied and the corresponding thermodynamic parameters, namely enthalpy change (ΔH), free energy change (ΔG) and entropy change (ΔS) at different temperatures (304, 314 and 324 K) were calculated according to the Van't Hoff relation. This revealed that the hydrophobic interaction plays a major role in stabilizing the complex. The fluorescence spectrum of BSA was studied in presence of various concentrations of SDS surfactant. The distance (r) between donor (BSA) and acceptor (FLD) was obtained according to fluorescence resonance energy transfer (FRET). The synchronous fluorescence spectroscopy was used to investigate the effect of FLD on BSA molecule. The result shows that the conformation of BSA was changed in the presence of felodipine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The quenching of the fluorescence of liver alcohol dehydrogenase (LADH) by molecular oxygen has been studied by both fluorescence lifetime and intensity measurements. This was done in the presence of 1 M acrylamide which selectively quenches the fluorescence of the surface tryptophan residue, Trp-15, thus allowing us to focus on the quenching of the deeply buried tryptophan, Trp-314, by molecular oxygen. Such studies yielded a Stern-Volmer plot of F0/F with a greater slope than the corresponding tau o/tau plot. This indicates that both dynamic and static quenching of Trp-314 occurs. The temperature dependence of the dynamic quenching of LADH by oxygen was also studied at three temperatures, from which we determined the activation enthalpy for the quenching of Trp-314 to be about 10 kcal/mol. The oxygen quenching of a ternary complex of LADH, NAD+ and trifluoroethanol was also studied. The rate constant for dynamic quenching of Trp-314 by oxygen was found to be approximately the same in the ternary complex as that in the unliganded enzyme.  相似文献   

6.
The novel two-color ratiometric fluorescence probe FA belonging to a class of 3-hydroxychromone dyes was applied for characterization of binding sites in serum albumins obtained from seven species (bovine, dog, horse, human, pig, rabbit and sheep). On strong and highly specific FA binding to the same location in protein structure, the species-dependent differences were observed in positions of absorption maxima, positions of two fluorescence emission bands and the intensity ratios between them. They were analyzed by multiparametric algorithm that allowed a detailed characterization of probe-binding sites and were characterized by very low polarity, high electronic polarizability and different extent of intermolecular hydrogen bonding. The species-dependent differences were also observed in time-resolved fluorescence emission decays. Fluorescence competition experiments with the drug warfarin, suggested the location of FA binding site within or in proximity to Domain IIA.  相似文献   

7.
Fluorescence quenching by a series of spin-labelled fatty acids is used to map the transverse disposition of tryptophan residues in bacteriorhodopsin (the sole protein in the purple membranes of Halobacterium halobium). A new method of data analysis is employed which takes into account differences in the uptake of the quenchers into the membrane. Energy transfer from tryptophan to a set of n-(9-anthroyloxy) fatty acids is used as a second technique to confirm the transverse map of tryptophan residues revealed by the quenching experiments. The relative efficiencies of quenching and energy transfer obtained experimentally are compared with those predicted on the basis of current models of bacteriorhodopsin structure. Most of the tryptophan fluorescence is located near the surface of the purple membrane. When the retinal chromophore of bacteriorhodopsin is removed, tryptophan residues deep in the membrane become fluorescent. These results indicate that the deeper residues transfer their energy to retinal in the native membrane. The retinal moiety is therefore located deep within the membrane rather than at the membrane surface.  相似文献   

8.
The horse EE and human β1β1 alcohol dehydrogenase isoenzymes have almost identical protein backbone folding patterns and contain 2 tryptophans per subunit (Trp-15 and Trp-314). Tyr-286, which had been proposed to quench the fluorescence of Trp-314 by resonance energy transfer at alkaline pH in EE, is substituted by Cys in β1β1. The proposed role of Tyr-286 in pH-dependent quenching of EE is confirmed by our observation that tryptophan fluorescence of β1β1 is not substantially quenched at alkaline pH. Tyr-286 had also been implicated in the quenching of Trp-314 upon formation of the EE-NAD+-trifluoroethanol ternary complex. However, β1β1 exhibits the same extent of tryptophan fluorescence quenching as EE upon complexation, which strongly suggests that Tyr-286 is not involved in ternary complex quenching.  相似文献   

9.
Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy‐transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Trifluoroacetamide was found to be a good quencher of tryptophan fluorescence, and the quenching was shown to proceed via both a dynamic and a static process. The respective quenching constants were determined by the measurement of the decrease of the fluorescence lifetime in the presence of the quencher. The static and the bimolecular rate quenching constants of N-acetyltryptophanamide are equal to 0.34 1·mol?1 and 1.9·109 1·mol?1·s?1, respectively. These values indicate that trifluoroacetamide is an efficient quencher of tryptophan fluorescence. This conclusion is also supported by a complete quenching of bovine serum albumin and wheat germ agglutinin fluorescence. In the case of lysozyme, trifluoroacetamide quenches the fluorescence of tryptophan residues which fluoresce with a maximum at 348 nm but not the buried tryptophan residues which fluoresce with a maximum at 333 nm. Trifluoroacetamide quenching of wheat germ agglutinin emission confirms the homogeneity and the high accessibility of emitting tryptophan residues, in agreement with a previous report (Privat, J.P. and Monsigny, M. (1975) Eur. J. Biochem. 60, 555–567). The tryptophan fluorescence decay of wheat germ agglutinin is biexponential even in the presence of the quencher; the static and bimolecular rate quenching constants are equal to 0.22 1·mol?1 and 092·109 1·mol?1·?1, respectively. In the presence of a specific lectin ligand, the methyldi-N,N′-trifluoroacetyl-β- chitobioside, the quenching of wheat germ agglutinin fluorescence involves a direct contact between tryptophan residues and trifluoroacetamido groups of the ligand and in contrast with the quenching induced by free trifluoroacetamide shows that the tryptophan fluorescence is not fully quenched.  相似文献   

11.
This study was a detailed characterization of the interaction of a series of imidazole derivatives with a model transport protein, human serum albumin (HSA). Fluorescence and time‐resolved fluorescence results showed the existence of a static quenching mode for the HSA–imidazole derivative interaction. The binding constant at 296 K was in the order of 104 M–1, showing high affinity between the imidazole derivatives and HSA. A site marker competition study combined with molecular docking revealed that the imidazole derivatives bound to subdomain IIA of HSA (Sudlow's site I). Furthermore, the results of synchronous, 3D, Fourier transform infrared, circular dichroism and UV–vis spectroscopy demonstrated that the secondary structure of HSA was altered in the presence of the imidazole derivatives. The specific binding distance, r, between the donor and acceptor was obtained according to fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A HPLC–UV determination of loratadine in human plasma is presented. After simple liquid–liquid extraction with 2-methylbutane–hexane (2:1) and evaporation of organic phase the compounds were re-dissolved in 0.01 M HCl, evaporated again and finally separated on a Supelcosil LC-18-DB column. The analyses were done at ambient temperature under isocratic conditions using the mobile phase: CH3CN–water–0.5 M KH2PO4–H3PO4 (440:480:80:1, v/v). UV detection was performed at 200 nm with a limit of quantification of 0.5 ng/ml. The precision was found to be satisfactory over the whole range tested (0.5–50 ng/ml) with relative standard deviations of 2.3–6.3 and 5.2–14.1% for intra- and inter-assays, respectively.  相似文献   

13.
Membrane penetration depth is an important parameter in relation to membrane structure and organization. A methodology has been developed to analyze the membrane penetration depths of fluorescent molecules or groups utilizing differential fluorescence quenching caused by membrane embedded spin-label probes located at different depths. The method involves determination of the parallax in the apparent location of fluorophores, detected when quenching by phospholipids spin-labelled at two different depths is compared. By use of relatively simple algebraic expressions, the method allows calculation of depth in å. This method has been used to determine the location of fluorophores in NBD-labelled lipids and anthroyloxy-labelled fatty acids in model membranes and of the membrane embedded tryptophan residues in the reconstituted nicotinic acetylcholine receptor.  相似文献   

14.
The fluorescence life-time of N-acetyl-tryptophan-amide (NATA) was measured by multifrequency phase fluorometry, in the presence of increasing concentrations of imidazole. Two pH values were tested, pH 4.5 where imidazole is fully protonated and pH 9.0 where it is fully unprotonated. At both pH values, the inverse life-time increases in a non-linear way with the imidazole concentration, showing that imidazole is not a high efficiency collisional quencher. The data can be analysed in terms of the formation of a complex with a reduced fluorescence life-time. The rate constants for association (at 25°C) are around 5 (±0.2) × 109 M–1 s–1 and are thus diffusion controlled. The association equilibrium constant is strongly pH dependent and is much higher than the expected value of 0.4 M–1 for a collisional complex. The intrinsic fluorescence life-time of the complex is 1.56 (±0.02) ns at pH 9.0 and 1.82 (±0.03) ns at pH 4.5, as compared to 2.37 (±0.03) ns for free NATA at pH 9.0 and 2.83 (±0.05) at pH 4.5 (all atI = 0.34). This means that at both pH values the fluorescence life-time of NATA in the complex is reduced to 61 (±0.5)% of its value in the free state. Despite this, the protonated form of imidazole is a better quencher at low concentrations, owing to a longer residence-time of the complex. At high viscosity the association equilibration is too slow and the system is described by two life-times. The quenching effect ofHis-18 on the fluorescence of the proximalTrp-94 of barnase (Locwenthal et al. 1991, Willaert et al. 1991) is discussed in terms of these findings.  相似文献   

15.
The interaction of allylisothiocyanate with bovine serum albumin was monitored by fluorescence titration. The interaction was weak with an apparent association constant of 2 × 102. The interaction was unaffected in the pH range of 5.0 to 8.3 and by NaCl. However, the addition of dioxane upto 4% increased the value of the association constant. N-Methyl bovine serum albumin and bovine serum albumin with sulphydryl groups blocked had the same affinity for allylisothiocyanate suggesting that amino and sulphydryl groups may not be involved in the interaction. Polyacrylamide gel electrophoresis and estimation of available lysine suggested that there were perhaps two types of groups involved in the interaction of allylisothiocyanate with bovine serum albumin. An erratum to this article is available at .  相似文献   

16.
Genistein is an isoflavone and phytoestrogen that is a potent inhibitor of cell proliferation and angiogenesis. This study was designed to investigate the binding of genistein to human serum albumin (HSA) under physiological conditions with drug concentrations in the range of 6.7 × 10−6 to 2.0 × 10−5 mol L−1 and HSA concentration at 1.5 × 10−6 mol L−1. Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy was used to determine the binding mode, the binding constant and the protein structure changes in the presence of genistein in aqueous solution. Changes in the CD spectra and FT-IR spectra were observed upon ligand binding, and the degree of tryptophan fluorescence quenching change did significantly in the complexes. These data have proved the change in protein secondary structure accompanying ligand binding. The change in tryptophan fluorescence intensity was used to determine the binding constants. The thermodynamic parameters, the enthalpy change (ΔH) and the entropy change (ΔS) were calculated to be −22.24 kJ mol−1and 19.60 J mol−1 K−1 according to the van’t Hoff equation, which indicated that hydrophobic and electrostatic interactions play the main role in the binding of genistein to HSA.  相似文献   

17.
The interaction of triazole substituted 4‐methyl‐7‐hydroxycoumarin derivatives (CUM1‐4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet‐visible (UV‐Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol?1. CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.  相似文献   

18.
Cod parvalbumin (isotype III) is a single tryptophan-containing protein. The fluorescence characteristics of this tryptophan residue (lambda em approximately 315 nm) suggest that it is buried from solvent and that it is located in an apolar core of the protein. Solute quenching studies of the tryptophan fluorescence of parvalbumin reveal dynamic quenching rate constants, kq, of 1.1 X 10(8) and 2.3 X 10(9) M-1 s-1 (at 25 degrees C) with acrylamide and oxygen, respectively, as quenchers. From temperature dependence studies, activation energies of 6.5 +/- 1.5 and 6.0 +/- 0.5 kcal/mol are found for acrylamide and oxygen quenching. The kq for acrylamide quenching is found to be relatively unchanged (+/- 10%) by an 8-fold increase in the bulk viscosity (glycerol/water mixture). These temperature and viscosity studies argue that the acrylamide quenching process involves a dynamic penetration of the quencher, facilitated by fluctuations in the protein's structure.  相似文献   

19.
Protein heterogeneous fluorescence results from the different microenvironment of each emitting chromophore. The structural and dynamic information contained in this emission can be extracted to some extent by selective quenching experiments. In this work, graphical and numerical methods are described for the analysis of protein emission in terms of three separated contributions: a fluorescence fraction which is not accessible to the quencher and two additional fractions with different solvent exposure. ‘Static quenching’ deviations from Stern-Volmer behaviour are also discussed. The application of these methods is exemplified on simulated quenching experiments and real data on acrylamide quenching of lysozyme fluorescence.  相似文献   

20.
The (+)-enantiomer of the polyphenolic binaphthyl gossypol, has been shown to be a useful CD probe of interactions with human and bovine serum albumin. (+)-Gossypol binds to albumin with same affinity as recemic (±)-gossypol, as shown by fluorescence quenching, and also displaces bilirubin from its albumin binding site. The CD characteristics of bound gossypol are different in the case of the two proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号