首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Garaguso I  Borlak J 《Proteomics》2008,8(13):2583-2595
The analytical performance of MALDI-MS is highly influenced by sample preparation and the choice of matrix. Here we present an improved MALDI-MS sample preparation method for peptide mass mapping and peptide analysis, based on the use of the 2,5-dihydroxybenzoic acid matrix and prestructured sample supports, termed: matrix layer (ML). This sample preparation is easy to use and results in a rapid automated MALDI-MS and MS/MS with high quality spectra acquisition. The between-spot variation was investigated using standard peptides and statistical treatment of data confirmed the improvement gained with the ML method. Furthermore, the sample preparation method proved to be highly sensitive, in the lower-attomole range for peptides, and we improved the performance of MALDI-MS/MS for characterization of phosphopeptides as well. The method is versatile for the routine analysis of in-gel tryptic digests thereby allowing for an improved protein sequence coverage. Furthermore, reliable protein identification can be achieved without the need of desalting sample preparation. We demonstrate the performance and the robustness of our method using commercially available reference proteins and automated MS and MS/MS analyses of in-gel digests from lung tissue lysate proteins separated by 2-DE.  相似文献   

2.
Protein identification by peptide mass mapping usually involves digestion of gel-separated proteins with trypsin, followed by mass measurement of the resulting peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Positive identification requires measurement of enough peptide masses to obtain a definitive match with sequence information recorded in protein or DNA sequence databases. However, competitive binding and ionization of residual surfactant introduced during polyacrylamide gel electrophoresis (PAGE) can inhibit solid-phase extraction and MS analysis of tryptic peptides. We have evaluated a novel, acid-labile surfactant (ALS) as an alternative to sodium dodecylsulfate (SDS) for two-dimensional (2-D) PAGE separation and MALDI-MS mapping of proteins. ALS was substituted for SDS at the same concentration in buffers and gels used for 2-D PAGE. Manual and automated procedures for spot cutting and in-gel digestion were used to process Coomassie stained proteins for MS analysis. Results indicate that substituting ALS for SDS during PAGE can significantly increase the number of peptides detected by MALDI-MS, especially for proteins of relatively low abundance. This effect is attributed to decomposition of ALS under acidic conditions during gel staining, destaining, peptide extraction and MS sample preparation. Automated excision and digestion procedures reduce contamination by keratin and other impurities, further enhancing MS identification of gel separated proteins.  相似文献   

3.
In theory, peptide mass fingerprinting by matrix assisted laser desorption–ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower μl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration.  相似文献   

4.
Mass spectrometric peptide mapping, particularly by matrix-assisted laser desorption-ionization (MALDI-MS), has recently been shown to be an efficient tool for the primary structure characterization of proteins. In combination with in situ proteolytic digestion of proteins separated by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mass spectrometric peptide mapping permits identification of proteins from complex mixtures such as cell lysates. In this study we have investigated several ion channel membrane proteins (porins) and their supramolecular assembly in mitochondrial membranes by peptide mapping in solution and upon digestion in the gel matrix. Porins are integral membrane proteins serving as nonspecific diffusion pores or as specific systems for the transport of substrates through bacterial and mitochondrial membranes. The well-characterized porin from Rhodobacter capsulatus (R.c.-porin) has been found to be a native trimeric complex by the crystal structure and was used as a model system in this study. R.c.-porin was characterized by MALDI-MS peptide mapping in solution, and by direct in situ-gel digestion of the trimer. Furthermore, in this study we demonstrate the direct identification of the noncovalent complex between a mitochondrial porin and the adenine nucleotide translocator from rat liver, by MALDI-MS determination of the specific peptides due to both protein sequences in the SDS-PAGE gel band. The combination of native gel electrophoresis and mass spectrometric peptide mapping of the specific gel bands should be developed as a powerful tool for the molecular identification of protein interactions. Proteins Suppl. 2:63–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Capillary liquid chromatography (cLC) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) was used to compare small proteins and peptides extracted from Bacillus subtilis spores grown on four different media. A single, efficient protein separation, compatible with MALDI-MS analysis, was employed to reduce competitive ionization between proteins, and thus interrogate more proteins than possible using direct MALDI-MS. The MALDI-MS data files for each fraction are assembled as two-dimensional data sets of retention time and mass information. This method of visualizing small protein data required careful attention to background correction as well as mass and retention time variability. The resulting data sets were used to create comparative displays of differences in protein profiles between different spore preparations. Protein differences were found between two different solid media in both phase bright and phase dark spore phenotype. The protein differences between two different liquid media were also examined. As an extension of this method, we have demonstrated that candidate protein biomarkers can be trypsin digested to provide identifying peptide fragment information following the cLC-MALDI experiment. We have demonstrated this method on two markers and utilized acid breakdown information to identify one additional marker for this organism. The resulting method can be used to identify discriminating proteins as potential biomarkers of growth media, which might ultimately be used for source attribution.  相似文献   

6.
We report the development of a robust interface for off-line coupling of nano liquid chromatography (LC) to matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) and its application to the analysis of proteolytic digests of proteins, both isolated and in mixtures. The interface makes use of prestructured MALDI sample supports to concentrate the effluent to a small sample plate area and localize the MALDI sample to a predefined array, thereby enriching the analyte molecules and facilitating automated MALDI-MS analysis. Parameters that influence the preparation of MALDI samples from the LC effluent were evaluated with regard to detection sensitivity, spectra quality, and reproducibility of the method. A procedure for data processing is described. The presented nano LC MALDI-MS system allowed the detection of several peptides from a tryptic digest of bovine serum albumin, at analyzed amounts corresponding to one femtomole of the digested protein. For the identification of native proteins isolated from mouse brain by two-dimensional gel electrophoresis, nano LC MALDI-MS increased the number of detected peptides, thereby allowing identification of proteins that could not be identified by direct MALDI-MS analysis. The ability to identify proteins in complex mixtures was evaluated for the analysis of Escherichia coli 50S ribosomal subunit. Out of the 33 expected proteins, 30 were identified by MALDI tandem time of flight fragment ion fingerprinting.  相似文献   

7.
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.  相似文献   

8.
Automated Protein Preparation Techniques Using a Digest Robot   总被引:2,自引:0,他引:2  
Since the introduction of fast analysis methods for peptide mixtures such as MALDI-MS, peptide micropreparation and digest methods have become an important bottleneck in the protein characterization process. We therefore developed and describe here a digest robot capable of processing 30 protein samples in parallel [Houthaeve el al. (1995), FEBS Lett. 376, 91–94]. Briefly, after gel pieces or blots are cut out, they are loaded in flowthrough reactors and these are loaded in a thermocontrolled reactor block. The proteins are then washed, reduced, and alkylated, proteolytically or chemically cleaved, and resulting peptides extracted. The system allows the parallel use of different reagents and enzymes during the same run, and is compatible with RP-HPLC peptide separation and Edman degradation, MALDI-MS, and NanoES-MS/MS. The digest robot is now also commercially available from ABIMED. In an ongoing project aimed at elucidating proteinaceous structures involved in the functional and structural maintenance of the Golgi apparatus, we illustrate the strength of the digest robot for the fast analysis of several proteins. We conclude that the performance of the digest robot is comparable to currently used manual digestion methods. The approach outlined makes sample preparation procedures faster, simpler, and less labor-intensive.  相似文献   

9.
Hua L  Low TY  Sze SK 《Proteomics》2006,6(2):586-591
We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.  相似文献   

10.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for analysis of macromolecules like peptides and proteins. The analysis procedure is generally simple but must be adapted to the characteristics of the analytes. Therefore, specific matrices suitable for, e.g., hydrophobic proteins and peptides that are difficult to analyze would be preferable in order to optimize the outcome. In the present work, 2,6-dihydroxyacetophenone (DHAP) was shown to be beneficial in comparison to DHB for intact bacteriorhodopsin (BR) as well as for chemically digested BR.  相似文献   

11.
Abstract

Bread represents an important source of trace elements in the human diet. This study is focused on home prepared bread in the Czech Republic. The amounts of Cu, Mo, Mn, Ni and Zn (total and soluble in Tris-HCl buffer, pH 7.5), Cd, Co, Fe, Pb and Tl (total only) as well as Hg (total and soluble in mercaptoethanol-HCl mixture) in raw materials and baked bread were determined using ICP-MS. Moreover, the speciation of elements was investigated using HPLC/ICP-MS. Isolated peptide ligands of the trace elements were analysed for amino acids and characterised by MALDI-MS. The concentrations of all elements were in accordance with Czech legislation. The solubility of the Ni species was not affected by the baking process, whereas the solubilities of Mo, Mn and Zn species decreased. Soluble mercury was found only in the inorganic form. The soluble species of Cu, Mo, Mn, Ni and Zn were found in two fractions with the apparent molecular weights of 1–2 kDa and 4–5 kDa. Ligands of trace metals isolated from these fractions contained appreciable amounts of Asx, Glx, Gly, Ser and Cys. No phytochelatin-like peptides were found in the MALDI-MS spectra of isolated ligands,. Using MALDI-MS/MS, the partial amino-acids sequences of peptide ligands were obtained, and the linkages of peptides and saccharides confirmed. The MS analysis of the trypsin digest of the medium molecular weight fraction revealed several proteins rich in cysteine (e.g., barwin and amylase inhibitors).  相似文献   

12.
A procedure for successful analysis of the hydrophobic tryptic peptides of the Neurospora crassa plasma membrane H+-ATPase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is described. The features of this procedure that are essential for the best results include (i) treatment of the hydrophobic peptide samples with neat trifluoroacetic acid, (ii) dissolution and disaggregation of the hydrophobic peptide samples with SDS at 0 degrees C, (iii) SDS-PAGE of the hydrophobic peptide samples in gels containing a 200:1 ratio of acrylamide to bisacrylamide and a 5-20% convex acrylamide gradient, and (iv) silver-staining of the gels after electrophoresis. This method results in the reproducible resolution and visualization of the H+-ATPase hydrophobic tryptic peptides, which range in size from ca. 5 to 21 kDa, as well as other peptides and proteins ranging in size from ca. 2.5 to 150 kDa. The methods described should also prove useful in other studies where resolution and visualization of hydrophobic peptides of integral membrane proteins are required.  相似文献   

13.
A method is introduced to evaluate protein concentrations using the height sum of all MALDI-MS peaks that unambiguously match theoretic tryptic peptide masses of the protein sought after. The method uses native chromatographic protein fractionation prior to digestion but does not require any depletion, labeling, derivatization, or preparation of a compound similar to the analyte. All peak heights of tryptic peptides are normalized with the peak height of a unique standard peptide added to the MALDI-MS samples. The sum of normalized peak heights, S(n), or the normalized mean peak height, M(n), reflects the concentration of the respective protein. For fractions containing various proteins, S(n) and M(n) can be used to compare concentrations of a protein between different fractions. For fractions with one predominating protein, they can be used to estimate concentration ratios between fractions, or to quantify the fractional protein concentration after calibration with pure protein solutions. Initial native fractionation retains the possibility to apply all conventional analytic procedures. Moreover, it renders the method relatively robust to MS mass accuracy. The method was validated with albumin, transferrin, alpha1-antitrypsin, and immunoglobulin G within highly complex chromatographic fractions of pathological and normal sera, which contained the respective intact native protein in dominating as well as minor concentrations. The correlation found between S(n) and the protein concentration as determined with ELISA showed that the method can be applied to select markers for distinguishing between normal and pathological serum samples.  相似文献   

14.
Abstract: Neuropeptides were directly detected in single identified neurons and the neurohemal area of peptidergic (neuroendocrine) systems in the Lymnaea brain by using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The samples were placed in matrix solution and ruptured to allow mixing of cell contents with the matrix solution. After formation of matrix crystals, the analytes were analyzed by MALDI-MS. It was surprising that clean mass spectra were produced, displaying extreme sensitivity of detection. In one of the neuroendocrine systems studied, we could demonstrate for the first time, by comparing the peptide patterns of soma and of neurohemal axon terminals, that processing of the complex prohormone expressed in this system occurs entirely in the soma. In the other system studied, novel peptides could be detected in addition to peptides previously identified by conventional molecular biological and peptide chemical methods. Thus, complex peptide processing and expression patterns could be predicted that were not detected in earlier studies using conventional methods. As the first MALDI- MS study of direct peptide fingerprinting in the single neuron these experients demonstrate that MALDI-MS forms a new and valuable approach to the study of the synthesis and expression of bioactive peptides, with potential application to single-cell studies in vertebrates, including humans.  相似文献   

15.
The activity-dependent release of peptides from the neuro-endocrine caudodorsal cell (CDC) system of the freshwater snail Lymnaea stagnalis regulates egg laying and related behaviors. In this study, we optimized a mass spectrometry-based approach to study the spatio-temporal dynamics of peptides that are largely derived from the CDC hormone precursor during an egg-laying cycle and a CDC discharge in vitro. Semi-quantitative peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) indicated a massive depletion of peptides from the neurohemal area in the cerebral commissure (COM) during egg laying and the existence of a reserve pool of peptides in the CDC somata that were transported to the COM to restore peptide levels. The depletion of CDC peptides from the COM was correlated to their release during an induced electrical discharge in vitro. Moreover, MALDI-MS of the releasate revealed extensive truncation of the carboxyl terminal peptide. Finally, two novel peptides of 1788 and 5895 Da, not encoded by the CDC hormone precursor, also exhibited temporal quantitative changes similar to those of CDC peptides. Sequencing of the peptide of 1788 Da by tandem mass spectrometry yielded the novel sequence HF(FH)FYGPYDVFQRDVamide. Together, this implicates a more complex set of CDC peptides for the regulation of egg laying than previously anticipated.  相似文献   

16.
Analysis and characterization of membrane proteins and hydrophobic peptides by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a considerable challenge because of their lower ionization efficiency. Detergents are used to solubilize hydrophobic peptides and proteins. However, in MALDI-MS, the presence of detergents can cause considerable loss of signal intensity. The extent of interference depends on the matrix/sample preparation method and experimental conditions. In the present study, we have analyzed the MALDI response of multiple fatty acylated peptides in the presence of the matrices alpha-cyano-4-hydroxy cinnamic acid (HCCA) and 2,5-dihydroxy benzoic acid (DHB). The effect of adding the nonionic detergent n-octylglucoside (OG) was also examined. The presence of OG facilitated detection of tetrapalmitoylated peptide, particularly when HCCA was used as the matrix. When DHB was used as the matrix, good signal intensity was observed in the absence of OG. Lower laser pulse rate in the linear mode of analysis resulted in good signal intensity for the tetrapalmitoylated peptide. Conditions for obtaining good signal intensities for dipalmitoylated and N-myristoyl peptides with both HCCA and DHB as matrices were also investigated.  相似文献   

17.
The localization of estrogen receptor (ER)β in mitochondria suggests ERβ-dependent regulation of genes, which is poorly understood. Here, we analyzed the ERβ interacting mitochondrial as well as nuclear proteins in mouse brain using pull-down assay and matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS). In the case of mitochondria, ERβ interacted with six proteins of 35-152 kDa, its transactivation domain (TAD) interacted with four proteins of 37-172 kDa, and ligand binding domain (LBD) interacted with six proteins of 37-161 kDa. On the other hand, in nuclei, ERβ interacted with seven proteins of 30-203 kDa, TAD with ten proteins of 31-160 kDa, and LBD with fourteen proteins of 42-179 kDa. For further identification, these proteins were cleaved by trypsin into peptides and analyzed by MALDI-MS using mascot search engine, immunoprecipitation, immunoblotting, and far-Western blotting. To find the consensus binding motifs in interacting proteins, their unique tryptic peptides were analyzed by the motif scan software. All the interacting proteins were found to contain casein kinase (CK) 2, phosphokinase (PK)C phosphorylation, and N-myristoylation sites. These were further confirmed by peptide pull-down assays using specific mutations in the interacting sites. Thus, the present findings provide evidence for the interaction of ERβ with specific mitochondrial and nuclear proteins through consensus CK2, PKC phosphorylation, and N-myristoylation sites, and may represent an essential step toward designing selective ER modulators for regulating estrogen-mediated signaling.  相似文献   

18.
Protein identification by matrix-assisted laser desorption/ionization mass-spectrometry peptide mass fingerprinting (MALDI-MS PMF) represents a cornerstone of proteomics. However, it often fails to identify low-molecular-mass proteins, protein fragments, and protein mixtures reliably. To overcome these limitations, PMF can be complemented by tandem mass spectrometry and other search strategies for unambiguous protein identification. The present study explores the advantages of using a MALDI-MS-based approach, designated minimal protein identifier (MPI) approach, for protein identification. This is illustrated for culture supernatant (CSN) proteins of Mycobacterium tuberculosis H37Rv after separation by two-dimensional gel electrophoresis (2-DE). The MPI approach takes into consideration that proteins yield characteristic peptides upon proteolytic cleavage. In this study, peptide mixtures derived from tryptic protein cleavage were analyzed by MALDI-MS and the resulting spectra were compared with template spectra of previously identified counterparts. The MPI approach allowed protein identification by few protein-specific signature peptide masses and revealed truncated variants of mycobacterial elongation factor EF-Tu, previously not identified by PMF. Furthermore, the MPI approach can be employed to track proteins in 2-DE gels, as demonstrated for the 14 kDa antigen, the 10 kDa chaperone, and the conserved hypothetical protein Rv0569 of M. tuberculosis H37Rv. Furthermore, it is shown that the power of the MPI approach strongly depends on distinct factors, most notably on the complexity of the proteome analyzed and accuracy of the mass spectrometer used for peptide mass determination.  相似文献   

19.
The use of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to acquire spectral profiles has become a common approach to detect proteomic biomarkers of disease. MALDI-MS signals may represent both intact proteins as well as proteolysis products. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis can tentatively identify the corresponding proteins Here, we describe the application of a data analysis utility called FragMint, which combines MALDI-MS spectral data with LC-MS/MS based protein identifications to generate candidate protein fragments consistent with both types of data. This approach was used to identify protein fragments corresponding to spectral signals in MALDI-MS analyses of unfractionated human serum. The serum also was analyzed by one-dimensional SDS-PAGE and bands corresponding to the MALDI-MS signal masses were excised and subjected to in-gel digestion and LC-MS/MS analysis. Database searches mapped all of the identified peptides to abundant blood proteins larger than the observed MALDI-MS signals. FragMint identified fragments of these proteins that contained the MS/MS identified sequences and were consistent with the observed MALDI-MS signals. This approach should be generally applicable to identify protein species corresponding to MALDI-MS signals.  相似文献   

20.
The low molecular weight plasma proteome and its biological relevance are not well defined; therefore, experiments were conducted to directly sequence and identify peptides observed in plasma and serum protein profiles. Protein fractionation, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling, and liquid-chromatography coupled to MALDI tandem mass spectrometry (MS/MS) sequencing were used to analyze the low molecular weight proteome of heparinized plasma. Four fractionation techniques using functionally derivatized 96-well plates were used to extract peptides from plasma. Tandem TOF was successful for identifying peptides up to m/z 5500 with no prior knowledge of the sequence and was also used to verify the sequence assignments for larger ion signals. The peptides (n>250) sequenced in these profiles came from a surprisingly small number of proteins (n approximately 20), which were all common to plasma, including fibrinogen, complement components, antiproteases, and carrier proteins. The cleavage patterns were consistent with those of known plasma proteases, including initial cleavages by thrombin, plasmin and complement proteins, followed by aminopeptidase and carboxypeptidase activity. On the basis of these data, we discuss limitations in biomarker discovery in the low molecular weight plasma or serum proteome using crude fractionation coupled to MALDI-MS profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号