首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronically ovariectomized ewes were pretreated with progesterone and oestradiol to induce oestrus and randomly allocated into four treatment groups. Progesterone injections were given to Groups 1 and 2 on Days 1–12 and Groups 3 and 4 on Days 1–15. Ewes in Groups 2 and 4 were infused with conceptus secretory proteins (oCSP), via an intrauterine catheter, twice daily on Days 13–15. Ewes in Groups 1 and 3 were similarly infused, but with serum proteins (oSP). Endometrial oxytocin receptor (OTr) concentrations and oxytocin-induced 13,14-dihydro-15-keto-prostaglandin F (PGFM) release were measured on Day 16.Progesterone concentrations in ewes receiving 12 days of progesterone treatment declined after Day 12, reaching a nadir on Day 14. In contrast, plasma progesterone concentrations remained elevated until Day 16 in ewes receiving the extended progesterone treatment. On Day 16, endometrial OTr concentrations were significantly higher in ewes given 12 days of progesterone treatment than in ewes given 15 days of progesterone irrespective of the presence of oCSP or oSP. Treatment with oCSP significantly decreased oxytocin-induced PGFM release in ewes given 12 days of progesterone treatment compared with those ewes receiving oSP infusions. The extended 15 day progesterone treatment resulted in a further decrease in oxytocin-induced PGFM release in both oCSP and oSP infused ewes.These data indicate that, in steroid treated ovariectomized ewes, intrauterine infusion of oCSP will reduce oxytocin-induced PGFM response but not OTr concentrations. Progesterone appears to play a dominant role in the regulation of OTr as well as oxytocin-induced PGFM release.  相似文献   

2.
In Exp. I, 0.5 mg oestradiol or vehicle (0.5 ml absolute ethanol + 0.5 ml 0.9% NaCl) was injected i.v. at 08:00 h on Day 14 (onset of oestrus = Day 0). Blood samples were obtained via a jugular catheter at 30 and 1 min before oestradiol and every 30 min for 10 h afterwards. Plasma was obtained and assayed for 15-keto-13,14-dihydro-PGF-2 alpha (PGFM) by radioimmunoassay. Before oestradiol, PGFM basal values were higher (P less than 0.01) in pregnant (N = 10) than nonpregnant (N = 6) ewes (193 +/- 30 vs 67 +/- 8 pg/ml). However, at 4-10 h after oestradiol, pregnant ewes (N = 5) had less variable (P less than 0.01) PGFM values than did nonpregnant ewes (N = 5). In Exp II, conceptus secretory proteins (CSP) were obtained by pooling medium from cultures of Day-16 sheep conceptuses (N = 40). Ewes received 750 micrograms CSP + 750 micrograms plasma protein (N = 6) or 1500 micrograms plasma protein (N = 6) per uterine horn at 08:00 h and 18:00 h on Days 12-14. All ewes received 0.5 mg oestradiol at 08:00 h on Day 14 and blood samples were collected as in Exp. I and assayed for PGFM. On Day 15, 3 ewes in each group received 10 i.u. oxytocin and 3 received saline i.v. at 08:00 h and blood samples were taken continuously from 10 min before to 60 min after treatment. Mean PGFM response to oestradiol was suppressed (P = 0.05) in CSP- vs plasma protein-treated ewes (371 +/- 129 vs 1188 +/- 139 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study examined the effects of progesterone and intrauterine injection of ovine conceptus secretory proteins (oCSP) on endometrial responsiveness to oxytocin. Twelve ewes were ovariectomized on day 4 of the cycle (oestrus = day 0) and assigned in a 2 x 2 factorial arrangement, to receive either 1.5 mg ovine serum proteins (SP) or oCSP containing 25 micrograms ovine trophoblast protein 1 (oTP-1) (by radioimmunoassay) in 1.5 mg total protein into each uterine horn, via catheters, twice a day on days 11, 12, 13 and 14. Ewes received 200 mg progesterone per day (i.m.) from day 4 to day 10 or 15. Oxytocin-induced prostaglandin F2 alpha was measured as 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) on days 11, 12, 13 and 14 in plasma from three integrated, 10 min (10 ml) blood samples (0-10, 10-20, 20-30 min) obtained after intravenous injection of 20 iu oxytocin, and in a pre-oxytocin (-10 to 0 min) sample collected via an indwelling jugular catheter. The pre-oxytocin samples were also assayed for progesterone. Oxytocin-induced turnover of inositol phosphate was determined in endometrium on day 15 after hysterectomy. In ewes receiving progesterone to day 10, plasma progesterone decreased from about 12 to 2 ng ml-1 (SEM +/- 2.6) during the treatment period (days 11-14), but remained high (12-20 +/- 2.6 ng ml-1) in ewes that received progesterone to day 15. Intrauterine injection of oCSP resulted in high basal concentrations of PGFM on days 12 and 13 compared with SP-treated ewes (P less than 0.01). Treatments with progesterone did not affect basal PGFM concentrations. Treatment with oCSP abolished oxytocin-induced endometrial secretion of prostaglandin only if progesterone was maintained to day 15 (P less than 0.01); in ewes receiving such treatment, oCSP inhibited (P less than 0.01), but SP did not inhibit, oxytocin-induced endometrial turnover of inositol phosphate (P less than 0.06), which was greater in ewes treated with progesterone to day 10 than in those treated to day 15 (P less than 0.05). Ewes that responded to oxytocin with increased PGFM exhibited increased oxytocin-stimulated turnover of inositol phosphate on day 15. These results indicate that the antiluteolytic action oTP-1 exerts on the endometrium requires progesterone and that this mechanism involves inhibition of oxytocin-stimulated turnover of inositol phosphate.  相似文献   

4.
In Experiment 1, 12 unmated cyclic ewes received twice-daily intrauterine injections on Days 12 to 14 of one of the following treatments: 1) ovine conceptus secretory proteins (oCSP) containing 25 mug of ovine trophoblast protein-1 (oTP-1) as determined by RIA; 2) 25 or 50 mug recombinant human interferon alpha1 (rhlFN); or 3) 1500 ug of serum proteins (oSP) from a Day-16 pregnant ewe (estrus = Day 0) per uterine horn. Ewes receiving oCSP had longer interestrous intervals (27 +/- 2 days; P<0.05) than ewes receiving oSP (17 +/- 2 days). Ewes receiving either dose of rhlFN had an interestrous interval of 16 +/- 2 days which did not differ (P>0.10) from that of oSP-treated ewes. In Experiment 2, 59 normally cycling ewes, mated on Day 0, received twice-daily intramuscular injections of either 2 mg recombinant bovine interferon alpha1 (rblFN) or placebo on Days 12 to 15 post estrus. On Day 16, pregnancy was confirmed by flushing a morphologically normal conceptus from the uterus. Pregnancy rates for rblFN-treated (80%) and placebo-treated (62%) ewes were not different (P>0.10). Uterine flushings and conceptus-conditioned medium were assayed for oTP-1. Total oTP-1 in conceptus-conditioned culture medium was higher (P<0.02) when conceptuses were from placebo-treated (104 +/- 14 mug/conceptus) than from rblFN-treated (56 +/- 12 mug/conceptus) ewes; while total oTP-1 in uterine flushings was similar (P>0.10) for placebo-treated (132 +/- 15 mug/conceptus) and rblFN-treated (147 +/- 17 mug/conceptus) ewes. The interval from mating to subsequent estrus following conceptus removal was 31 +/- 1 and 28 +/- 1 days for pregnant ewes treated with rblFN and placebo, respectively. Interestrous intervals for nonpregnant ewes were longer (P<0.02) for rblFN-treated (27 +/- 3 days) than for placebo-treated (18 +/- 2 days) ewes.  相似文献   

5.
In experiment (Exp) 1, 12 cyclic ewes had catheters placed into each uterine horn on Day 7 (estrus = Day 0). On Days 11-15, 6 ewes received twice-daily intrauterine infusions of 1.5 mg serum protein (SP) into each uterine horn and 6 ewes received infusions of 1.08 mg SP + 0.42 mg ovine conceptus secretory proteins (oCSP) containing 25 micrograms ovine trophoblast protein-one (oTP-1) as determined by radioimmunoassay (25-35% bioactive by antiviral assay). SP-infused and oCSP-infused ewes had similar plasma 13,14-dihydro-15-keto prostaglandin F2 alpha (PGF2 alpha) profiles in response to oxytocin on Day 11, but SP ewes became more responsive (p less than 0.01) to oxytocin on Days 13 and 15 than oCSP ewes. SP ewes also had greater incorporation of [3H]inositol into inositol trisphosphate (IP3) (+3449%, p less than 0.01) and total inositol phosphate (IP) (+760%, p less than 0.08), in response to oxytocin, than did oCSP ewes (+553 and +168% for IP3 and total IP, respectively) in endometrium collected at ovariectomy/hysterectomy on Day 16. Mean CL weights on Day 16 and mean concentrations of progesterone in plasma collected at 12-h intervals on Days 6-16 were not different for SP and oCSP ewes, but concentrations of progesterone were lower (p less than 0.05) in SP ewes on Days 15-16 than for oCSP ewes. These results indicate that oTP-1 may prevent luteolysis by inhibiting development of endometrial responsiveness to oxytocin and, therefore, reduce oxytocin-induced synthesis of IP3 and PGF2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Pregnancy and intrauterine infusion of ovine trophoblast protein one (oTP-1) decrease oxytocin-induced secretion of prostaglandin F2 alpha (PGF) from the uterus. In the present study, effects of oTP-1 and pregnancy on endometrial secretion of PGF were examined in an in vitro perifusion system. In Experiment 1, endometrium from day 14 pregnant and cyclic ewes was perifused sequentially on both the lumenal and myometrial sides with Krebs Ringers Bicorbonate solution (KRB), KRB plus oxytocin (1 IU/ml) and KRB alone. Endometrium from pregnant ewes secreted more PGF from both lumenal and myometrial sides than endometrium from cyclic ewes (P less than 0.05). Oxytocin stimulated secretion of PGF from both sides of endometrium regardless of status. Secretion of PGF was greater from the lumenal surface of endometrium compared to myometrium (P less than 0.05) for pregnant and cyclic ewes. For Experiment 2, endometrium was collected from day 15 cyclic ewes and perifused sequentially with KRB, KRB plus 300 ng/ml of either Bovine Serum Albumin (BSA) or oTP-1, KRB with or without BSA or oTP-1 plus oxytocin (1 IU/ml) and then KRB alone. Oxytocin stimulated greater release of PGF from oTP-1-treated than BSA-treated endometrium. Pretreatment of endometrium with oTP-1 had the same effect on oxytocin-induced PGF secretion as cotreatment with oTP-1 and oxytocin. In Experiment 3, uterine horns of cyclic ewes were catheterized on day 10 of the estrous cycle, and infused with either oTP-1 or day 16 pregnant sheep serum proteins on days 12, 13 and 14. Endometrium was collected on day 15 and perifused sequentially with KRB, KRB plus oxytocin (1 IU/ml) and then KRB alone. Treatment of ewes with oTP-1 attenuated endometrial secretion of PGF in response to oxytocin. Results of this study indicate that: (1) pregnancy stimulates basal secretion of PGF from endometrium and has no effect on oxytocin-induced secretion of PGF in vitro; (2) short-term oTP-1 treatment enhances oxytocin-induced PGF secretion from day 15 cyclic endometrium and (3) long-term oTP-1 treatment in vivo inhibits oxytocin-induced PGF secretion in ewes.  相似文献   

7.
Experiment 1 was conducted to determine when the ovine uterus develops the ability to secrete prostaglandin F2 alpha (PGF2 alpha) in response to oxytocin and how development is affected by pregnancy. Pregnant and nonpregnant ewes received an injection of oxytocin (10 IU, i.v.) on Day 10, 13, or 16 postestrus. Jugular venous blood samples were collected for 2 h after injection for quantification of 13,14-dihydro-15-keto-PGF2 alpha (PGFM). In nonpregnant ewes, concentrations of PGFM increased following oxytocin on Day 16 but not on Day 10 or 13. Concentrations of PGFM did not increase following treatment on Day 10, 13, or 16 in pregnant ewes. Therefore, the ability of oxytocin to induce uterine secretion of PGF2 alpha develops after Day 13 in nonpregnant but not in pregnant ewes. Experiment 2 was conducted to precisely define when uterine secretory responsiveness to oxytocin develops. Pregnant and nonpregnant ewes received oxytocin on Day 12, 13, 14, or 15. In nonpregnant ewes, concentrations of PGFM increased following treatment on Days 14 and 15, but not earlier. Peripheral concentrations of progesterone showed that uterine secretory responsiveness to oxytocin developed prior to the onset of luteal regression. As in experiment 1, the increase in concentrations of PGFM following administration of oxytocin was much lower in pregnant than in nonpregnant ewes; however, some pregnant ewes did respond to oxytocin with an increase in PGFM. In experiment 3, pregnant ewes received an injection of oxytocin on Day 18, 24, or 30 postmating. Concentrations of PGFM increased following oxytocin on Days 18 and 24. The conceptus appears to delay and attenuate the development of uterine secretory responsiveness to oxytocin.  相似文献   

8.
The objectives of this study were to determine the effects of buserelin or saline treatment on ovarian function (Experiment 1), plasma PGFM concentrations and oxytocin stimulated prostaglandin F(2alpha) (PGF(2alpha)) release (Experiment 2) in ewe lambs and ewes. Welsh Halfbred ewes (n=26) and ewe lambs (n=24) were mated to vasectomised rams at synchronised oestrus and on Day 12 post-mating each animal was injected intramuscularly either normal saline or 4 microg buserelin. In Experiment 1, plasma progesterone and oestradiol concentrations were determined in samples collected by jugular venepuncture 1h before and at 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment (n=7 per treatment group). Progesterone concentrations increased (P<0.05) from 2 to 8h after buserelin treatment and returned to basal levels after 72 h, whereas oestradiol concentrations were maximal at 2h post-treatment and returned to basal levels after 24h (P<0.05). Oestradiol concentrations were lower (P<0.05) in buserelin-treated animals than controls at 72 h post-treatment. Basal and post-treatment progesterone concentrations were greater (P<0.05) in ewes than in ewe lambs but oestradiol levels were similar for both age groups. Ovulation rate, determined by laparoscopy on Day 14, was similar for both age groups (ewes 1.1; ewe lambs 1.0). Buserelin treatment induced accessory corpora lutea in ewes (4/7; 57%) but not in ewe lambs (0/7; 0%). In the Experiment 2, plasma PGFM concentrations were determined in samples collected at 20-min intervals for 6h on Day 14 and at 20-min intervals for 1h before and at 10-min intervals for 1h and then at 20-min intervals for a further 3h period after an intravenous injection of oxytocin (1IU/kg body weight) on Day 15 post-oestrus. In this experiment there were five ewe lambs and six ewes per treatment group. There was no effect of buserelin treatment or age on basal PGFM concentrations on either Day 14 or 15. Although peak PGFM concentrations tended to be lower in buserelin-treated animals, the difference was not significant (P>0.05). However, peak duration following oxytocin challenge on Day 15 post-mating was shorter (P<0.05) in control ewes compared with control ewe lambs. In conclusion, buserelin treatment given on Day 12 post-oestrus enhances luteal function more in ewes than ewe lambs and after a transitory increase, reduces oestradiol concentrations in both ewes and ewe lambs. However, buserelin treatment does not significantly attenuate the luteolytic signal.  相似文献   

9.
Pregnancy and intrauterine infusion of ovine trophoblast protein one (oTP-1) decrease oxytocin-induced secretion of prostaglandin F2α (PGF) from the uterus. In the present study, effects of oTP-1 and pregnancy on endometrial secretion of PHF were examined in an in vitro perifusion system. In Experiment 1, endometrium from day 14 pregnant and cyclic ewes was perifused sequentially on both the lumenal and myometrial sides with Krebs Ringers Bicorbonate solution (KRB), KRB plus oxytocin (1 IU/ml) and KRB alone. Endormetrium pregnant ewes secreted more PGF fro both lumenal and myotrial sides than endometrium from cyclic ewes (P<0.05). Oxytocin stimulated secretion of PGF was greater from the lumenal surface of endometrium compared to myometrium was collected from day 15 cyclic ewes and perifused sequentially with KRB, KRB plus 300 ng/ml of either Bovine Serum Albumin (BSA) or oTP-1, KRB with or without BSA or oTP-1 plus oxytocin (1 IU/ml) and then KRB alon. Oxytocin stimulated greater release of PGF from oTP-1-treated than BSA-treated endometrium. Pretreament of endometrium with oTP-1 has the same effect on oxytocin-induced PGF section was cotreatment with oTP-1 and oxytocin. In Experiment 3, uterine horns of cyclic ewes were catheterized on day 10 of the estrous cycle, and infused with either oTP-1 or day 16 pregnant sheep serum proteins on days 12, 13 and 14. Endometrium was collected on day 15 and perifused sequentially with KRB, KRB plus oxytocin (1 IU/ml) and then KRB alone. Treatment of ewes with oTP-1 attenuated endometrial secretion of PGF in response to oxytocin. Results of this study indicate that: (1) preganancy stimulates basal secretion of PGF from endometrium and has no effect on oxytocin-induced secretion of PGF in vitro; (2) short-term oTP-1 treatment enhances oxytocin-induced PGF secretion from day 15 cyclic endometrium and (3) long-term oTP-1 treatment in vivo inhibits oxytocin-induced PGF secretion in ewes.  相似文献   

10.
Three experiments (Exp) assessed the influence of stage of the estrous cycle, pregnancy, and intrauterine infusion of ovine conceptus secretory proteins (oCSP) on turnover of inositol trisphosphate (the putative second-messenger for oxytocin-stimulated secretion of prostaglandin F2 alpha) in ovine endometrium during luteolysis and maternal recognition of pregnancy. In Exp 1, endometrium was collected from 5 cyclic (Cy) and 6 pregnant (P) ewes on Day 16 after onset of estrus. In Exp 2, endometrium was collected from Day 12 Cy (n = 5), Day 12 P (n = 3), Day 16 Cy (n = 4), and Day 16 P (n = 3) ewes. In Exp 3, 12 Cy ewes were allotted randomly, in a 2 x 2 factorial arrangement, to receive serum protein (SP), or oCSP and estradiol-17 beta (E2), or vehicle treatments. Ewes were injected i.v. with 0.5 mg E2 or vehicle on Day 12 and received twice-daily infusions of 1.5 mg SP or oCSP (containing 25 micrograms ovine trophoblast protein-1 by radioimmunoassay [RIA]) + SP (1.5 mg total protein) into each uterine horn on Days 12, 13, and 14. Blood samples for RIA of plasma progesterone were collected on Days 10-15 (before treatment on each day) and endometrium was collected on Day 15. For each Exp, 100 mg endometrium was incubated, in duplicate, for 2 h with 10 microCi [3H] inositol and treated with 0 or 100 nM oxytocin (OT) for 20 min, then [3H]inositol mono-, bis-, and trisphosphates (IP1, IP2, and IP3, respectively) were quantified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of administration of progesterone and oestradiol on ovine endometrial oxytocin receptor concentrations and plasma concentrations of 13,14-dihydro-15-keto prostaglandin F-2 alpha (PGFM) after oxytocin treatment were determined in ovariectomized ewes. Ewes received progestagen pre-treatment, progesterone and/or oestradiol in 11 different treatment schedules. Progestagen pre-treatment decreased oxytocin receptor concentrations in endometrium from ewes treated subsequently with either progesterone for 5 days or progesterone for 5 days plus oestradiol on Days 4 and 5 of progesterone treatment. Oestradiol increased endometrial oxytocin receptor concentrations when administered on Days 4 and 5 of 5 days progesterone treatment. Progestagen pre-treatment followed by progesterone treatment for 12 days caused a large increase in oxytocin receptors and no further increase occurred when ewes were given oestradiol on Days 11 and 12, or when progesterone was withdrawn on Days 11 and 12, or these two treatments were combined. Oxytocin administration caused an increase in plasma PGFM concentrations in ewes which did not receive progestagen pre-treatment, and subsequently received progesterone treatment for 5 days and oestradiol treatment on Days 4 and 5 of progesterone treatment. Similarly treated ewes which received progestagen pre-treatment did not respond to oxytocin. Oxytocin administration also increased plasma PGFM concentrations in ewes which received progestagen pre-treatment followed by progesterone treatment for 12 days, progesterone treatment for 12 days plus oestradiol on Day 11 and 12 of progesterone treatment, progesterone withdrawal on Day 11 and 12, or progesterone withdrawal and oestradiol treatment combined. The results indicate that (1) progesterone pre-treatment affects oxytocin receptor concentrations in the endometrium and uterine responsiveness to oxytocin and (2) progesterone treatment alone for 12 days after a treatment which mimics a previous luteal phase and oestrus is sufficient to induce oxytocin receptors and increase oxytocin-induced PGF release. These results emphasize the importance of progesterone and provide information which can be used to form an hypothesis for control of luteolysis and oestrous cycle length in the ewe.  相似文献   

12.
The oxytocin-induced uterine prostaglandin (PG) F2 alpha response and the levels of endometrial oxytocin receptors were measured in ovariectomized ewes after they had been given steroid pretreatment (SP) with progesterone and estrogen to induce estrus (day of expected estrus = Day 0) and had subsequently been treated with progesterone over Days 1-12 and/or PGF2 alpha over Days 10-12 postestrus. The uterine PGF2 alpha response was measured after an i.v. injection of 10 IU oxytocin on Days 13 and 14, using the PGF2 alpha metabolite, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), as an indicator for PGF2 alpha release. The levels of oxytocin receptors in the endometrium were measured on Day 14. During the treatment with progesterone, the peripheral progesterone concentrations were elevated and remained above 1.8 ng/ml until the morning of Day 14. The PGFM responses to oxytocin in untreated controls and SP controls were low on both Days 13 and 14 whereas the levels of endometrial oxytocin receptors in the same ewes were high. Treatment with progesterone either alone or in combination with PGF2 alpha significantly (p less than 0.04) increased the PGFM response on Day 14 and reduced the levels of endometrial oxytocin receptors; treatment with PGF2 alpha alone had no effect. It is concluded that progesterone promotes the PGFM response to oxytocin while simultaneously suppressing the levels of endometrial oxytocin receptors. PGF2 alpha treatment had no effect on either the uterine secretory response to oxytocin or the levels of oxytocin receptors in the endometrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Two experiments were conducted to determine if the ability of oxytocin to stimulate release of prostaglandin (PG)F2 alpha from ovine uterine tissue involved activation of phospholipase C (PLC). In the first experiment, 9 ewes were injected with progesterone for 11 d (12 mg/d, im). On days 11 and 12, ewes received an injection of estradiol (100 micrograms, im). Caruncular endometrial tissue was collected on d 13 and incubated in the presence or absence of oxytocin (10(-6) M). Concentrations of PGF2 alpha and its metabolite, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), in culture media were determined by radioimmunoassay. PLC activity was determined by measuring the intracellular accumulation of 3H-inositol phosphates after preincubation with 3H-inositol. Concentrations of PGF2 alpha and total PGF (PGF2 alpha + PGFM) in culture media were greater for explants treated with oxytocin than for controls (p. less than .02, p less than .06, respectively). A similar effect of oxytocin on intracellular concentrations of 3H-inositol phosphates was observed (p less than .01). A second experiment was conducted to determine if agonists of second messengers, produced by activation of PLC, could stimulate release of PGF2 alpha from ovine endometrial tissue. Seven ewes were treated with progesterone and estradiol as in experiment 1. Explants of caruncular tissue from each ewe were incubated with 1) control medium, 2) A23187 (10(-5) M), 3) oxytocin (10(-6) M), 4) phorbol 12-myristate 13-acetate (PMA, 10(-7) M), 5) PMA + A23187 and 6) PMA + oxytocin. Significant stimulatory effects of oxytocin, PMA and A23187 on concentrations of PGF2 alpha and total PGF in culture media were observed (p. less than .05, p less than .1, p less than .1, respectively). In conclusion, oxytocin stimulated release of PGF2 alpha and activity of PLC in explants of ovine endometrial tissue in vitro. Second messengers associated with activation of PLC enhanced release of PGF2 alpha from ovine endometrial tissue.  相似文献   

14.
In Exp. 1, endometrium was collected from Day-15 cyclic ewes and effects of oTP-1, oxytocin and oTP-1 + oxytocin, in various temporal relationships, on phosphatidylinositol (PI) turnover were determined. Co-treatment of endometrium with oTP-1 and oxytocin inhibited stimulatory effects of oxytocin, while treatment with oTP-1 before and during oxytocin administration had no effect. Turnover of PI was unaffected by oTP-1 alone. In Exp. 2, ovariectomized ewes were treated with progesterone (50 mg/day) for 10 days and then oestrogen (100 micrograms/day) for 2 days and endometrium was collected. Oxytocin stimulated PI turnover in endometrium, but oTP-1 had no effect alone or in combination with oxytocin. In Exp. 3, ovariectomized ewes were treated with corn oil (1 ml/day), oestrogen (50 micrograms/day), progesterone (50 mg/day) or progesterone + oestrogen for 10 days and endometrium was collected. Oxytocin stimulated PI turnover only in ewes that received progesterone. oTP-1 alone had no effect on PI turnover, while co-treatment of endometrium with oxytocin and oTP-1 stimulated PI turnover in ewes treated with progesterone, but not progesterone and oestrogen. Pretreatment of endometrium with oTP-1 stimulated PI turnover when ewes were treated with progesterone or progesterone + oestrogen. Pretreatment of endometrium with oxytocin and then treatment with oTP-1 inhibited PI turnover compared to treatment with oxytocin alone. In Exp. 4, ovariectomized ewes were treated as in Exp. 2. Catheters were placed into the uterine horns and ewes received oTP-1 into one horn and serum into the other twice daily on Days 10-12 of steroid treatment. Endometrium collected on Day 13 was used to measure PI turnover and received either no treatment or oxytocin. Oxytocin stimulated PI turnover in endometrium of these ewes and in-vivo treatment of the ewes with oTP-1 had no effect on PI turnover. These results indicate that antiluteolytic effects of oTP-1 are not mediated by inhibiting effects of oxytocin on phosphatidylinositol turnover if oxytocin receptors are present and that uterine responsiveness to oxytocin is progesterone dependent.  相似文献   

15.
Seven bilaterally ovariectomized heifers were used in 4 experiments and received: (1) saline injections, as control; (2) one injection of oestradiol (3 mg; i.v.); (3) two i.v. injections of oxytocin (100 i.u.) 6 h apart; or (4) one oestradiol injection 30 min after the first oxytocin injection and a second oxytocin injection 6 h later. All experiments were performed without progesterone and then after 7, 14 and 21 days of progesterone treatment. Frequent blood samples were taken for 1 h before and 7 h after the first injection of oxytocin or oestradiol for the measurement of 13,14-dihydro-15-keto-PGF-2 alpha (PGFM) by radioimmunoassay. After 7, 14 and 21 days of progesterone priming, oestradiol caused a significant increase (P less than 0.001) in plasma PGFM after 6 h but not before. After 7, 14 and 21 days of progesterone, there was a significant increase (P less than 0.005) in PGFM after the first oxytocin injection and a similar increase following the second. The oxytocin-induced increase in PGFM after 14 and 21 days of progesterone was significantly higher (P less than 0.001) 6 h after oestradiol injection than before the oestradiol injection. There was no significant effect of oestradiol on the response to oxytocin in animals that received no progesterone or in those animals that received progesterone for only 7 days. These results show that, under the influence of progesterone, oestradiol enhances the oxytocin-induced release of PGF-2 alpha, and suggest a possible synergistic action of these hormones for the induction of luteolysis in heifers.  相似文献   

16.
Anoestrous Romney Marsh ewes with (+P) and without (-P) progesterone pretreatment were induced to ovulate by multiple low-dose injection of GnRH followed by a bolus injection of GnRH. Luteal function was assessed by twice daily measurement of plasma progesterone. Animals were slaughtered on Days 3 or 5 after the end of GnRH treatment and CL and endometrium were recovered. In all Day-5 ewes, blood samples were collected at 30-min intervals for 8 h on Days 3 and 5 for measurement of PGFM and oxytocin. At slaughter 92% of the Group +P ewes had ovulated compared with 54% of the Group -P ewes. The ovaries of some of the Group -P ewes only contained luteinized cysts either alone or in association with CL. In the ewes that ovulated, progesterone profiles were normal in all Group +P ewes, whereas Group -P ewes had 'normal' or 'abnormal' profiles in which plasma progesterone was declining prematurely. All of the CL from ewes with abnormal progesterone profiles were associated with follicular cysts, and were significantly smaller and with a lower progesterone content on Day 5. PGFM levels decreased (P less than 0.05) between Days 3 and 5 in ewes in Groups +P and -P with 'normal' CL but increased (P less than 0.01) in Group -P ewes with 'abnormal' CL. Oxytocin levels were lower in Group -P ewes with 'abnormal' CL on Day 5, than in 'normal' ewes in Groups -P (P less than 0.01) or +P (P less than 0.05). In 3/5 Day-5 ewes with 'abnormal' CL there was a clear association between a major peak of oxytocin and a rise in PGFM during the frequent sampling period on Day 3 or Day 5, and endometrial oxytocin binding sites were present at slaughter. This suggests that the premature regression of 'abnormal' CL occurs via the normal luteolytic mechanism. Although ewes in Groups +P and -P with 'normal' CL had similar progesterone profiles, plasma oxytocin was significantly higher (P less than 0.05) in the Group -P ewes and oxytocin binding sites were present only in this group, suggesting that progesterone pretreatment can influence the production of both oxytocin and its receptor.  相似文献   

17.
The objective was to examine effects of elevated prostaglandin F2alpha (PGF) on embryo development in cows supplemented with exogenous progestogen. Cows were artificially inseminated at estrus (Day 0) and a synthetic progestogen supplemented in the feed from Days 3 to 8. Cows were allotted randomly to receive either 15 mg PGF (TRT) or saline (CON) at 06:00, 14:00 and 22:00 h from Days 5 to 8. Blood samples were collected at 06:00 and 22:00 h from Days 5 to 8 for determination of progesterone and 13,14-dihydro-15-keto-PGF2alpha (PGFM). Single embryos were recovered on Day 8, assigned a quality score, and stage of development recorded. Progesterone was lower from Days 5 to 8 in TRT versus CON cows (P = 0.0001). Concentrations of PGFM from Days 5 to 8 were elevated in TRT compared to CON cows (P = 0.0001). Embryo quality was reduced in TRT cows compared to CON cows (P = 0.059). Percentage of embryos considered transferable was decreased by administration of PGF (P = 0.003). Sixty-four percent of TRT embryos were retarded in development at Day 8, whereas 80% of CON embryos had developed to expanded blastocysts (P = 0.003). In conclusion, treatment of progestogen-supplemented cows with PGF reduced quality and retarded development of embryos. Decreased fertility in conditions causing elevated concentrations of PGF may result from altered embryo development and quality.  相似文献   

18.
Oxytocin stimulates a rapid increase in ovine endometrial prostaglandin (PG) F2alpha synthesis. The overall objective of these experiments was to investigate the cellular mechanisms by which oxytocin induces endometrial PGF2alpha synthesis. The objective of experiment 1 was to determine whether G(i) proteins mediate oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. Pertussis toxin, an inhibitor of G(i) proteins, had no effect on the ability of oxytocin to induce PGF2alpha synthesis (P > 0.10). The objective of experiment 2 was to determine whether any of the three mitogen-activated protein kinases (MAPKs), extracellular signal regulated protein kinase (ERK1/2), c-Jun N-terminal/stress-activated protein kinase (JNK/SAPK), or p38 MAPK, mediate oxytocin-induced PGF(2alpha) synthesis. Eleven ovary-intact ewes were given an injection of oxytocin (10 IU; i.v.; n = 5) or physiological saline (i.v.; n = 6) on Day 15 postestrus. Uteri were collected 15 min after injection and caruncular endometrium was dissected. Endometrial homogenates were prepared and subjected to Western blotting. Membranes were probed for both total and phosphorylated forms of all three classes of MAPK. All classes of MAPK were detected in ovine endometrium, but oxytocin treatment had no effect on the expression of these proteins (P > 0.10). ERK1/2 was the only phosphorylated MAPK detected and its concentrations were higher in oxytocin-treated ewes (P < 0.01). The objective of experiment 3 was to further investigate the role of ERK1/2 during oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. PD98059, a specific inhibitor of ERK1/2 activity, blocked the ability of oxytocin to stimulate PGF(2alpha synthesis in a dose-dependent manner (P < 0.05). These results indicate that the ovine oxytocin receptor is not coupled to G(i) proteins. These results indicate that oxytocin induces phosphorylation of ERK1/2 and that this MAPK appears to mediate oxytocin-induced PGF2alpha synthesis in ovine endometrium.  相似文献   

19.
Twenty ovariectomized ewes were used in an experiment designed to examine the interaction of progesterone, estradiol, and oxytocin in the regulation of uterine secretion of prostaglandin F2 alpha (PGF2 alpha). All ewes underwent a steroid pretreatment that mimicked the changes in progesterone and estradiol which occur during the six days immediately prior to estrus. After pretreatment, ewes were randomly assigned to 1 of 4 treatment groups: 1) control (n = 4); 2) estradiol-17 beta (n = 6); 3) progesterone (n = 4); and 4) progesterone and estradiol-17 beta (n = 6). Progesterone was injected twice daily for 15 days. The dose of progesterone varied with day postestrus in a manner designed to simulate endogenous luteal secretion of progesterone. Estradiol-17 beta was administered in s.c. Silastic implants. The implants maintained circulating concentrations of estradiol at 3 pg/ml. On Days 5, 10, and 15 of treatment, ewes were injected with oxytocin (10 IU in 1.0 ml saline, i.v.). Jugular venous blood samples were collected beginning one-half hour prior to and continuing for 2 hours post-oxytocin injection for quantification of 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM). No changes in concentration of PGFM following injection of oxytocin were observed on Day 5 or 10 in any treatment group. Concentrations of PGFM increased following injection of oxytocin on Day 15 only in groups receiving progesterone. Both the area under the PGFM response curve (p = 0.08) and peak response (p = 0.06) were greater in ewes treated with progesterone and estradiol-17 beta than in those receiving progesterone alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A study was done to evaluate the efficacy of graded doses of prostaglandin F(2alpha) (PGF(2alpha)) to induce regression of the corpus luteum and hence estrus, in cycling ewes when given on various days of the estrous cycle. One hundred cycling cross-bred ewes were observed twice daily (08:00 and 20:00 h) for marking by raddled vasectomized rams. After estrus was confirmed in marked ewes by assay of plasma progesterone concentration, the ewes were treated in pairs with 0, 5, 10, 15 or 20 mg PGF(2alpha) on day 2, 3, 4, 7, 8, 9, 12, 13, 14 or 15 of an estrous cycle and then exposed to a raddled ram of known libido and fertility. Plasma progesterone levels were determined on the day of, and on the day following PGF(2alpha)-treatment to monitor luteal function. Ewes marked between one and five days after treatment and having a decrease in plasma progesterone were considered to have responded to the treatment. The percentages of ewes responding were 10, 35, 60, 70 and 95 to doses of 0, 5, 10, 15 and 20 mg PGF(2alpha) respectively. Differences due to dose were significant (P < 0.01) with the two higher doses being more effective. There were differences due to the day of injection, with treatments on days 2 and 3 being less effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号