首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV exposure suppresses the immune response to a variety of microbial, fungal, and viral Ags. In addition, UV radiation is a complete carcinogen and the immune suppression induced by UV radiation is a major risk factor for skin cancer induction. In this study, we examined the mechanisms underlying the induction of immune suppression and tolerance induction by UV radiation. Transferring lymph nodes cells from UV-irradiated, FITC-sensitized mice into normal recipients transferred immune tolerance. Contrary to expectations, the cell responsible was an FITC(+), IL-10-secreting, CD19(+), B220(+) B cell. Because the lipid mediator of inflammation, platelet-activating factor (PAF) is released by UV-irradiated keratinocytes and is essential for the induction of immune suppression, we determined its role in tolerance induction. When UV-irradiated mice were injected with PCA 4248, a selective PAF receptor (PAFR) antagonist, transfer of tolerance was suppressed. However, immune suppression was not transferred when FITC(+) cells from the draining lymph nodes of UV-irradiated, PAFR-deficient donor mice were injected into the recipients. Because PCA 4248 also blocks serotonin receptor binding, we measured the effect that blocking both serotonin and PAFR binding has on the transfer of immune suppression. Only when both PAF and serotonin binding were blocked could we inhibit tolerance induction. These data identify a novel function for PAF and serotonin in modulating immune function, the activation of immunoregulatory B cells.  相似文献   

2.
UV-induced immune suppression is a risk factor for sunlight-induced skin cancer. Exposure to UV radiation has been shown to suppress the rejection of highly antigenic UV-induced skin cancers, suppresses delayed and contact hypersensitivity, and depress the ability of dendritic cells to present Ag to T cells. One consequence of UV exposure is altered activation of T cell subsets. APCs from UV-irradiated mice fail to present Ag to Th1 T cells; however, Ag presentation to Th2 T cells is normal. While this has been known for some time, the mechanism behind the preferential suppression of Th1 cell activation has yet to be explained. We tested the hypothesis that this selective impairment of APC function results from altered cytokine production. We found that dendritic cells/macrophages (DC/Mphi) from UV-irradiated mice failed to secrete biologically active IL-12 following in vitro stimulation with LPS. Instead, DC/Mphi isolated from the lymphoid organs of UV-irradiated mice secreted IL-12p40 homodimer, a natural antagonist of biologically active IL-12. Furthermore, when culture supernatants from UV-derived DC/Mphi were added to IL-12-activated T cells, IFN-gamma secretion was totally suppressed, indicating that the IL-12p40 homodimer found in the supernatant fluid was biologically active. We suggest that by suppressing DC/Mphi IL-12p70 secretion while promoting IL-12p40 homodimer secretion, UV exposure preferentially suppress the activation of Th1 cells, thereby suppressing Th-1 cell-driven inflammatory immune reactions.  相似文献   

3.
Involvement of dectin-2 in ultraviolet radiation-induced tolerance   总被引:5,自引:0,他引:5  
Hapten sensitization through UV-exposed skin induces hapten-specific tolerance which can be adoptively transferred by injecting T cells into naive recipients. The exact phenotype of the regulatory T cells responsible for inhibiting the immune response and their mode of action remain largely unclear. Dectin-2 is a C-type lectin receptor expressed on APCs. It was postulated that dectin-2 interacts with its putative ligands on T cells and that the interaction may deliver costimulatory signals in naive T cells. Using a soluble fusion protein of dectin-2 (sDec2) which should inhibit this interaction, we studied the effect on contact hypersensitivity (CHS) and its modulation by UV radiation. Injection of sDec2 affected neither the induction nor the elicitation phase of CHS. In contrast, UV-induced inhibition of the CHS induction was prevented upon injection of sDec2. In addition, hapten-specific tolerance did not develop. Even more importantly, injection of sDec2 into tolerized mice rendered the recipients susceptible to the specific hapten, indicating that sDec2 can break established tolerance. FACS analysis of spleen and lymph node cells revealed a significantly increased portion of sDec2-binding T cells in UV-tolerized mice. Furthermore, transfer of UV-mediated suppression was lost upon depletion of the sDec2-positive T cells. Taken together, these data indicate that dectin-2 and its yet unidentified ligand may play a crucial role in the mediation of UV-induced immunosuppression. Moreover, sDec2-reactive T cells appear to represent the regulatory T cells responsible for mediating UV-induced tolerance.  相似文献   

4.
Exposing murine keratinocyte cultures to UV radiation causes the release of a suppressive cytokine that mimics the immunosuppressive effects of total-body UV exposure. Injecting supernatants from UV-irradiated keratinocyte cultures into mice inhibits their ability to generate a delayed-type hypersensitivity reaction against allogeneic histocompatibility Ag, and spleen cells from mice injected with supernatant do not respond to alloantigen in the in vitro MLR. A unique feature of the immunosuppression induced by either total-body UV-exposure or injecting the suppressive cytokine from UV-irradiated keratinocytes is the selectivity of suppression. Although cellular immune reactions such as delayed-type hypersensitivity are suppressed antibody production is unaffected. Because the selective nature to the UV-induced immunosuppression is similar to the biologic activity of IL-10, we examined the hypothesis that UV exposure of keratinocytes causes the release of IL-10. Keratinocyte monolayers were exposed to UV radiation and at specific times after exposure mRNA was isolated or the culture supernatant from the cells was collected. IL-10 mRNA expression was enhanced in UV-irradiated keratinocytes. The secretion of IL-10 by the irradiated keratinocytes was determined by Western blot analysis. A band reactive with anti-IL-10 mAb was found in supernatants from the UV-irradiated but not the mock-irradiated cells. IL-10 biologic activity was determined by the ability of the supernatants from the UV-irradiated keratinocytes to suppress IFN-gamma production by Ag-activated Th 1 cell clones. Anti-IL-10 mAb neutralized the ability of supernatants from UV-irradiated keratinocytes to suppress the induction of delayed-type hypersensitivity in vivo. Furthermore, injecting UV-irradiated mice with antibodies against IL-10 partially inhibited in vivo immunosuppression. These data indicate that activated keratinocytes are capable of secreting IL-10 and suggest that the release of IL-10 by UV-irradiated keratinocytes plays an essential role in the induction of systemic immunosuppression after total-body UV exposure.  相似文献   

5.
Hapten sensitization through UV-exposed skin induces systemic immune suppression, which is experimentally demonstrated by inhibition of contact hypersensitivity (CHS). Although this UV-induced effect has been shown to be mediated by inhibition of the afferent phase of the CHS, the UV effects on the efferent (elicitation) phase remain unknown. In this study, UV effects on endothelial ICAM-1 expression at elicitation sites were first examined. Mice were sensitized by hapten application onto UV-exposed back skin, and ears were challenged 5 days later. ICAM-1 up-regulation at nonirradiated elicitation sites following hapten challenge was eliminated by UV exposure on sensitization sites distant from elicitation sites. To assess whether loss of the ICAM-1 up-regulation at elicitation sites contributed to UV-induced immunosuppression, we examined CHS responses in UV-exposed ICAM-1-deficient (ICAM-1(-/-)) mice that genetically lacked the ICAM-1 up-regulation. ICAM-1(-/-) mice exhibited reduced CHS responses without UV exposure, but UV exposure did not further reduce CHS responses in ICAM-1(-/-) mice. Furthermore, ICAM-1 deficiency did not affect the afferent limb, because ICAM-1(-/-) mice had normal generation of hapten-specific suppressor and effector T cells. This UV-induced immunosuppression was associated with a lack of TNF-alpha production after Ag challenge at elicitation sites. Local TNF-alpha injection before elicitation abrogated the UV-induced CHS inhibition with increased endothelial ICAM-1 expression. TNF-alpha production at elicitation sites was down-regulated by IL-10, a possible mediator produced by hapten-specific suppressor T cells that are generated by UV exposure. These results indicate that UV exposure inhibits CHS by abrogating up-regulation of endothelial ICAM-1 expression after Ag challenge at elicitation sites.  相似文献   

6.
The article reviews the application of the contact hypersensitivity assay in mice to the science of photoimmunology. The contact hypersensitivity (CHS) reaction, which is suppressed by UV irradiation in mice similarly to their ability to respond immunologically to skin tumors, has been used very profitably to reveal many of the regulating factors that control photoimmunosuppression, such as the identity of the photoreceptors that initiate immunosuppression, the defects induced in the cutaneous antigen presenting pathway, the local cytokine imbalance, and the protective intervention by various molecules, drugs, or interacting UV wavebands. Technical hints to optimize the measurement of the CHS response are suggested, including information on UV radiation wavebands and dosages and sensitivities of different mouse strains.  相似文献   

7.
The purpose of this study was to determine whether soluble suppressor factors are involved in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (UV Ts). The UV Ts were induced by applying contact allergens to the ventral, unirradiated skin of mice that had been exposed 5 days earlier to UVB radiation. Supernatants from cultures that contained a mixture of UV Ts, normal responder lymphocytes, and hapten-modified stimulator cells were injected iv into normal recipients at the time of sensitization; they inhibited the induction of contact hypersensitivity (CHS) in vivo in an hapten-specific manner. The supernatants similarly suppressed the generation of specific cytotoxic T lymphocytes (CTL) in vitro. Moreover, supernatants from cultures that contained either UV Ts alone or UV Ts in combination with either the responder or the stimulator cells failed to suppress the CHS and CTL responses. These results suggest that hapten-specific inhibitory factors may participate in the regulation of immune responses by suppressor cells generated by epicutaneous sensitization of UV-irradiated mice.  相似文献   

8.
In this study we compared the effects of subinflammatory and inflammatory doses of solar-simulated ultraviolet (UV) radiation on enhancement of skin tumor growth, sensitization to haptens and cellular changes within the epidermis of C3H/HeN mice. Tumors transplanted into mice 3 days after exposure to inflammatory, but not subinflammatory, doses of UV radiation had a higher growth rate than those tumors inoculated into unirradiated control mice. Both doses of UV radiation suppressed the induction of contact hypersensitivity and induced tolerance when hapten was painted onto the skin 3 days after irradiation. Skin exposed to the higher, but not the lower, dose of UV radiation contained significantly increased numbers of CD11b+, CD45+ MHC class II- and CD45+ MHC class II(hi) inflammatory cells 3 days post-irradiation. The immunosuppression correlated with a reduction in Langerhans cells and dendritic epidermal T cells. Collectively, this suggests that suppression to contact sensitizers is due to the UV radiation effects on Langerhans cells and dendritic epidermal T cells. While these effects may also suppress the induction of anti-tumor immunity, at higher doses of UV radiation inflammatory cells may enhance tumor growth by a non-immunological mechanism.  相似文献   

9.
The purpose of this study was to determine whether multiple types of suppressor factors play a role in the regulation of immune responses by ultraviolet radiation-induced suppressor T lymphocytes (UV Ts). The UV Ts were induced by applying contact allergens to the ventral, unirradiated skin of mice exposed 5 days earlier to UVB radiation. Previous studies indicated that supernatants from cultures containing UV Ts, normal lymphocytes, and hapten-modified cells suppressed contact hypersensitivity (CHS) in vivo and cytotoxic T lymphocyte (CTL) generation in vitro in a hapten-specific manner. In this report, cell-free lysates from sonically disrupted UV Ts were examined for their ability to suppress these responses. When lysates were injected into normal animals at the time of sensitization, they inhibited CHS in a hapten-nonspecific manner. In addition, the lysates suppressed not only the induction but also the elicitation of CHS, and they suppressed the generation of CTL. Lysates prepared from spleen cells obtained from non-UV-irradiated mice or UV-irradiated, unsensitized mice failed to inhibit either response. Moreover, in contrast to the lysates, the hapten-specific UV Ts culture supernatants inhibited the induction but not the elicitation of CHS. These results suggest that both hapten-specific and nonspecific inhibitory factors may participate in the regulation of immune responses by UV Ts.  相似文献   

10.
Ultraviolet A (UVA) irradiation of the dorsal skin of mice reduced the contact hypersensitivity (CHS) response and the density of epidermal Langerhans cells (LC). The roles of nitric oxide (NO) and reactive oxygen species (ROS) in these biological effects of UVA were investigated. Topical application of N(G)-monomethyl-L-arginine acetate, an inhibitor of NO production, 2,2'-dipyridyl, an iron chelater, or 4-hydroxy-tempo, a superoxide dismutase mimicking agent, inhibited UVA-induced suppression of the CHS response. N(G)-monomethyl-L-arginine acetate but not the ROS inhibitors prevented UVA from reducing LC numbers in the epidermis. This suggests that NO but not ROS produced in response to UVA mediates a depletion of LC from the epidermis, probably by signaling these cells to migrate from the skin. This could be responsible for UVA-induced immunosuppression. UVA-induced ROS can also cause immunosuppression, but by a different mechanism. Agents that inhibit or modulate NO or ROS production may be useful for preventing damage caused by the UVA component of sunlight to the skin immune system.  相似文献   

11.
UV radiation of the skin impairs immune responses to haptens and to tumor Ags. Transcutaneous immunization (TCI) is an effective method of inducing immune responses to protein and peptide Ag. We explore the effect of UV irradiation on TCI. The generation of Ag-specific CTL to OVA protein, but not class I MHC-restricted OVA peptide, is inhibited by TCI through UV-irradiated skin. Consequently, the induction of protein contact hypersensitivity and in vivo Ag-specific CTL activity following OVA protein immunization is prevented. Application of haptens to UV-exposed skin induces hapten-specific tolerance. We demonstrate that application of protein or class II MHC-restricted OVA peptide to UV-irradiated skin induces transferable Ag-specific tolerance. This tolerance is mediated by CD4(+)CD25(+) T regulatory (T(reg)) cells. These Ag-specific T(reg) cells inhibit the priming of CTL following protein immunization in the presence of CpG adjuvant. IL-10 deficiency is known to prevent hapten-specific tolerance induction. In this study, we demonstrate, using IL-10-deficient mice and adoptive T cell transfer, that IL-10 is required for the direct inhibition of CTL priming following immunization through UV-irradiated skin. However, IL-10 is not required for the induction of T(reg) cells through UV-irradiated skin as IL-10-deficient T(reg) cells are able to mediate tolerance. Rather, host-derived IL-10 is required for the function of UV-generated T(reg) cells. These experiments indicate that protein and peptide TCI through UV-irradiated skin may be used to induce robust Ag-specific tolerance to neo-Ags and that UV-induced T(reg) cells mediate their effects in part through the modulation of IL-10.  相似文献   

12.
Exposure of mice to UVB radiation produces a highly selective, systemic immunosuppression associated with the appearance of suppressor T lymphocytes. Suppression of delayed hypersensitivity to hapten-coupled syngeneic cells has been shown to result from an altered distribution of antigen-presenting cells. The purpose of this study was to determine whether an alteration in the activity of antigen-presenting cells could account for the systemic suppression of contact hypersensitivity (CHS) by UVB radiation. Fluorescein isothiocyanate (FITC) was used for contact sensitization because it uses different antigen-presenting cells than does oxazolone to induce CHS. Our previous studies demonstrated that CHS to oxazolone was suppressed by UVB irradiation. In these studies, we show that exposure of mice to UVB radiation before epicutaneous application of FITC onto unirradiated skin markedly decreased the CHS response to FITC painted on unexposed ears. Cyclophosphamide-sensitive suppressor T cells were detectable in the spleens of mice exhibiting decreased CHS. The antigen-presenting activity of cells in lymph nodes draining the site of epicutaneous sensitization (DLN cells) was assessed by injecting them into the hind footpads of syngeneic recipients and measuring the CHS response to FITC 6 days later. Viable DLN cells from UVB-irradiated, FITC-sensitized mice were equal to those from unirradiated, FITC-sensitized mice in their ability to induce CHS in normal recipients. No sensitization resulted when killed DLN cells were used for immunization, indicating that sensitization was not caused by reprocessing of antigen by host cells. We conclude that impairment of the CHS reaction in UVB-irradiated mice does not appear to be blocked at an initial step of antigen uptake, processing, or presentation, but must be impaired at some other step in the immunologic pathway.  相似文献   

13.
Direct UV irradiation of dendritic cells and Langerhans cells reduces their Ag presenting ability. However, the effects of UV on CD11c(+) cells located distally to the point of irradiation are poorly understood. Three days after UV irradiation (8 kJ/m(2)) of BALB/c mice, bone marrow cells were isolated and cultured for 7 d with IL-4 and GM-CSF for the propagation of CD11c(+) cells. Bone marrow-derived CD11c(+) cells from UV-irradiated or nonirradiated mice were loaded with dinitrobenzene sulfonic acid and injected into the ear pinnas of naive BALB/c mice. After 7 d, the ears were painted with 2,4-dinitro-1-fluorobenzene and the ear swelling determined 24 h later. A reduced contact hypersensitivity response was found in mice injected with CD11c(+) cells from the UV-irradiated animals compared with those injected with cells from the nonirradiated animals. Further, a long-lasting suppression of the memory response to 2,4-dinitro-1-fluorobenzene was created. This suppressed response corresponded to increased IL-10 and PGE(2) secretion by freshly isolated bone marrow cells from UV-irradiated mice, and to increased myelopoiesis. The reduction in competence of bone marrow-derived CD11c(+) cells from UV-irradiated mice was not due to delayed maturation, as it was maintained upon LPS exposure prior to CD11c(+) cell purification. The UV-induced effect was reversed by the administration of indomethacin to mice prior to UV irradiation and could be reproduced by s.c. PGE(2). These results show that UV irradiation of mice can affect the function of bone marrow-derived CD11c(+) cells via a mechanism inhibitable by indomethacin; this pathway is likely to contribute to systemic UV-induced immunosuppression.  相似文献   

14.
TGF-beta is a key immunoregulatory cytokine which supports self-tolerance by signaling to T cells. In this report, we show a crucial role for TGF-beta signaling to T cells in enabling the long-term acceptance of allografts, whether natural or induced therapeutically by coreceptor and costimulation blockade. The requirement for TGF-beta appears most pronounced during the initial exposure to alloantigens. We demonstrate the ability of TGF-beta to direct the development in vitro of regulatory cells that suppress graft rejection in vivo. Such suppression was not affected by anti-TGF-beta treatment of the recipient mice. Despite this, TGF-beta may still have a role in CD4+ cell-mediated suppression of antiallograft responses in vivo, since its neutralization can, in some cases, abrogate suppression. These results show that TGF-beta signaling to T cells is dispensable for mounting destructive responses against skin allografts while appearing to be an essential intermediary in establishing long-term tolerance.  相似文献   

15.
Dendritic cells (DCs) are antigen-presenting cells (APCs) capable of capturing haptens and to process and present them to T lymphocytes. In order to sensitize T cells for contact hypersensitivity (CHS), skin DCs suffer a maturation process with modifications on their surface molecules. The aim of this work was to evaluate changes induced by two contact sensitizers, 2,4-dinitrofluorobenzene (DNFB) and nickel sulfate (NiSO4), and a non-sensitizer 2,4-dichloronitrobenzene (DCNB), on the protein levels of two activation markers, CD40 and IL-12 receptor (IL-12R), in a mouse skin dendritic cell line (FSDC). The expression of CD40 and IL-12R proteins was evaluated by western blot assay and direct immunofluorescence microscopy. The results showed that CD40 and IL-12R expression increased significantly after cell exposure to NiSO4 and DNFB, although DNFB exhibited a stronger activity. There was no effect with DCNB. The epidermal cytokine granulocyte–macrophage colony-stimulating factor (GM-CSF), also used in the experiments, slightly increased the expression of both CD40 and IL-12R and when tested together with the sensitizers the effect was partially additive. The results suggest that the sensitizers DNFB and NiSO4 are directly involved on the changes of the surface markers CD40 and IL-12R in skin DCs, during the sensitization phase of CHS, and this effect may be enhanced by GM-CSF. In contrast, no effect was observed with DCNB.  相似文献   

16.
UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified.  相似文献   

17.
IL-10 controls ultraviolet-induced carcinogenesis in mice   总被引:1,自引:0,他引:1  
UV radiation-induced immunosuppression contributes significantly to the development of UV-induced skin cancer by inhibiting protective immune responses. IL-10 has been shown to be a key mediator of UV-induced immunosuppression. To investigate the role of IL-10 during photocarcinogenesis, groups of IL-10(+/+), IL-10(+/-), and IL-10(-/-) mice were chronically irradiated with UV. IL-10(+/+) and IL-10(+/-) mice developed skin cancer to similar extents, whereas IL-10(-/-) mice were protected against the induction of skin malignancies by UV. Because UV is able to induce regulatory T cells, which play a role in the suppression of protective immunity, UV-induced regulatory T cell function was analyzed. Splenic regulatory T cells from UV-irradiated IL-10(-/-) mice were unable to confer immunosuppression upon transfer into naive recipients. UV-induced CD4+CD25+ T cells from IL-10(-/-) mice showed impaired suppressor function when cocultured with conventional CD4+CD25- T cells. CD4+CD25- T cells from IL-10(-/-) mice produced increased amounts of IFN-gamma and enhanced numbers of CD4+TIM-3+ T cells were detectable within UV-induced tumors in IL-10(-/-) mice, suggesting strong Th1-driven immunity. Mice treated with CD8+ T cells from UV-irradiated IL-10(-/-) mice rejected a UV tumor challenge significantly faster, and augmented numbers of granzyme A+ cells were detected within injected UV tumors in IL-10(-/-) animals, suggesting marked antitumoral CTL responses. Together, these findings indicate that IL-10 is critically involved in antitumoral immunity during photocarcinogenesis. Moreover, these results point out the crucial role of Th1 responses and UV-induced regulatory T cell function in the protection against UV-induced tumor development.  相似文献   

18.
UV radiation induces skin cancer primarily by its DNA-damaging properties, but also by its capacity to suppress the immune system. The photoisomer of urocanic acid (UCA), cis-UCA, is an important mediator of UV-induced immunosuppression and is involved in the inhibition of tumor immunity. The immunomodulatory cytokine IL-12 is known to counteract many of the immunosuppressive effects of UV radiation, including UV-induced immune tolerance. In this study, we addressed whether IL-12 also reverts the immunosuppressive activities of cis-UCA. Cis-UCA inhibits the ability of Langerhans cells to present tumor Ags for primary and secondary tumor immune responses. IL-12 treatment completely prevented the suppression by cis-UCA. IL-12 also protected mice from cis-UCA-induced suppression of contact hypersensitivity responses. To study the effects of cis-UCA on Ag-processing and Ag-presenting function in vitro, Langerhans cells were treated with UCA isomers and incubated with OVA or OVA peptide(323-339) before exposure to OVA-specific transgenic T cells. Cis-, but not trans-UCA suppressed Ag presentation, which was completely reversed upon addition of IL-12. Since these findings suggest that cis-UCA may play an important role in photocarcinogenesis by inhibiting a tumor immune response, mice were chronically UVB irradiated to induce skin cancer. Whereas all mice in the control groups developed tumors, mice treated with a mAb with specificity for cis-UCA showed a significantly reduced tumor incidence. These data strongly indicate the importance of cis-UCA during photocarcinogenesis and support the concept of counteracting cis-UCA as an alternative strategy to prevent UV-induced skin cancer, possibly via the application of IL-12.  相似文献   

19.
The UV radiation in sunlight is the primary cause of skin cancer. UV is also immunosuppressive and numerous studies have shown that UV-induced immune suppression is a major risk factor for skin cancer induction. Previous studies demonstrated that dermal mast cells play a critical role in the induction of immune suppression. Mast cell-deficient mice are resistant to the immunosuppressive effects of UV radiation, and UV-induced immune suppression can be restored by injecting bone marrow-derived mast cells into the skin of mast cell- deficient mice. The exact process however, by which mast cells contribute to immune suppression, is not known. In this study, we show that one of the first steps in the induction of immune suppression is mast cell migration from the skin to the draining lymph nodes. UV exposure, in a dose-dependent manner, causes a significant increase in lymph node mast cell numbers. When GFP(+) skin was grafted onto mast cell-deficient mice, we found that GFP(+) mast cells preferentially migrated into the lymph nodes draining the skin. The mast cells migrated primarily to the B cell areas of the draining nodes. Mast cells express CXCR4(+) and UV exposure up-regulated the expression of its ligand CXCL12 by lymph node B cells. Treating UV-irradiated mice with a CXCR4 antagonist blocked mast cell migration and abrogated UV-induced immune suppression. Our findings indicate that UV-induced mast cell migration to draining lymph nodes, mediated by CXCR4 interacting with CXCL12, represents a key early step in UV-induced immune suppression.  相似文献   

20.
UVB radiation is a potent immunosuppressive agent that inhibits cell-mediated immune responses. The mechanisms by which UVB radiation influences cell-mediated immune responses have been the subject of extensive investigation. However, the role of innate immunity on photoimmunological processes has received little attention. The purpose of this study was to determine whether Toll-like receptor-4 (TLR4) contributed to UV-induced suppression of contact hypersensitivity (CHS) responses. TLR4−/− and wild type C57BL/6 (TLR4+/+) mice were subjected to a local UVB immunosuppression regimen consisting of 100 mJ/cm2 UVB radiation followed by sensitization with the hapten DNFB. Wild type TLR4+/+ mice exhibited significant suppression of contact hypersensitivity response, whereas TLR4−/− developed significantly less suppression. The suppression in wild type TLR4+/+ mice could be adoptively transferred to naïve syngeneic recipients. Moreover, there were significantly fewer Foxp3 expressing CD4+CD25+ regulatory T-cells in the draining lymph nodes of UV-irradiated TLR4−/− mice than TLR4+/+ mice. When cytokine levels were compared in these two strains after UVB exposure, T-cells from TLR4+/+ mice produced higher levels of IL-10 and TGF-β and lower levels of IFN-γ and IL-17. Strategies to inhibit TLR4 may allow us to develop immunopreventive and immunotherapeutic approaches for management of UVB induced cutaneous immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号