首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaflet movements in the legume Samanea saman are dependent upon massive redistribution of potassium (K), chloride (Cl), and other solutes between opposing (extensor and flexor) halves of the motor organ (pulvinus). Solutes are known to diffuse through the apoplast during redistribution. To test the possibility that solute diffusion might be restricted by apoplastic barriers, we analyzed elements in the apoplast in freeze-dried cryosections of pulvini using scanning electron microscopy/x-ray microanalysis. Large discontinuities in apoplastic K and Cl at the extensor-flexor interface provide evidence for a barrier to solute diffusion. The barrier extends from the epidermis on upper and lower sides of the pulvinus to cambial cells in the central vascular core. It is completed by hydrophobic regions between phloem and cambium, and between xylem rays and surrounding vascular tissue, as deduced by discontinuities in apoplastic solutes and by staining of fresh sections with lipid-soluble Sudan dyes. Thus, symplastic pathways are necessary for ion redistribution in the Samanea pulvinus during leaflet movement. In pulvini from leaflets in the closed state, all cells on the flexor side of the barrier have high internal as well as external K and Cl, whereas cells on the extensor side have barely detectable internal or external K or Cl. Approximately 60% of these ions are known to migrate to the extensor during opening; all return to the flexor during subsequent closure. We propose that solutes lost from shrinking cells in the outer cortex diffuse through the apoplast to plasmodesmata-rich cells of the inner cortex, collenchyma, and phloem; and that solutes cross the barrier by moving through plasmodesmata.  相似文献   

2.
Changes in shape and size of Robinia pulvinar cortical cellsin relation to leaflet movements have been investigated usingan image processing system applied to drawings of transverseand longitudinal pulvinar sections. Both the size and shapeof cell sections underwent change during movement. The dorsal-leftside region of the cortex has been characterized as the extensorregion which increases turgor during opening. Morphometric changesoccur throughout the cortical motor cells except in the threeor four inner layers. K, Cl, S, and Ca distribution in cellwalls and protoplasts of inner and outer motor cells have beenmeasured with X-ray microanalysis. The distribution patternof K and Cl shows that these ions are mainly responsible forturgor changes. K and Cl were simultaneously depleted in apoplastand protoplast, which suggests that cell walls do not possessa high enough ionic reservoir during Robinia leaflet movements.Ca was always higher in flexor cell walls than in extensor regionsof closed pulvini. This fact could be related to a lower abilityto extend of flexor cells which underwent fewer morphomerticchangrs during movement.  相似文献   

3.
Summary Mature leaves ofMimosa pudica L. or parts of them were exposed to14CO2, and translocation was recorded by macroautoradiography. It was observed that considerable amounts of labelled photoassimilates were accumulated in pulvini when the leaf was stimulated. In non-stimulated leaves, no such accumulation of label was observed.Microautoradiographs of pulvinar regions of the non-stimulated leaf showed14C- label restricted to the phloem. When stimulated, the14C- label was unloaded from the phloem of the pulvini. Labelled photoassimilates appeared most concentrated in the walls of the collenchymatous cells and beyond in the extensor region of the motor cortex. There, label was accumulated in the apoplastic compartments. Stimulation causes a sudden phloem unloading of sucrose, and its accumulation in the apoplast lowers the water potential which eventually exceeds the osmotic potential of the extensor cells of the motor cortex. By removal of cytoplasmic water the motor cells lose turgidity which results in the closing movement of the leaflets, and — some seconds later — in the bending down of the petiole. In late afternoon night-stimulation triggers sucrose unloading in secondary pulvini. During phases of relaxation, labelled material is taken up by motor cells of the extensor, which concomitantly gain turgor.Part of the doctoral dissertation of Jörg Fromm supported by the Deutsche Forschungsgemeinschaft  相似文献   

4.
Blue light was found to induce shrinkage of the protoplasts isolated from first-leaf lamina pulvini of 18-day-old Phaseolus vulgaris. The response was transient following pulse stimulation, while it was sustainable during continuous stimulation. No apparent difference was found between flexor and extensor protoplasts. Protoplasts of the petiolar segment located close to the pulvinus showed no detectable response. In the plants used, the pulvinus was fully matured and the petiole was ceasing its elongation growth. When younger, 12-day-old, plants were used, however, the petiolar protoplasts did respond to blue light. The pulse-induced response was similar to that in pulvinar protoplasts, although the response to continuous stimulation was transient and differed from that in pulvinar protoplasts. No shrinkage was induced in pulvinar protoplasts when the far-red-light-absorbing form of phytochrome was absent for a period before blue-light stimulation, indicating that the blue-light responsiveness is strictly controlled by phytochrome. Inhibitors of anion channels and H(+)-ATPase abolished the shrinking response, supporting the view that protoplasts shrink by extruding ions. The response of pulvinar protoplasts is probably involved in the blue-light-induced, turgor-based movement of pulvini. The blue-light responding system in pulvini is suggested to have evolved from that functioning in other growing organs.  相似文献   

5.
The location and some morphological, anatomical, and functional aspects of the gravity-sensitive pulvini of a selected number of grass shoots are examined. There are two distinct gravity-sensitive regions near the nodal regions of Gramineae. One, the leaf sheath pulvinus, is located at the base of the sheathing leaf bases, and is characteristic of the subfamily Festucoideae. The other, the internodal pulvinus, is located at the base of the internode, a little above the nodal joint. Most members of the Panicoideae possess internodal pulvini, in addition to more or less developed leaf sheath pulvini. Three members of the Oryzoideae examined possess leaf sheath pulvini only, while Phragmites australis (Arundinoideae) possesses both leaf sheath and internodal pulvini. Leaf sheath pulvini of some grasses develop hairs, cork-silica cell pairs or stomatal apparatuses over the epidermis while many others are devoid of any such idioblasts. Both the leaf sheath and internodal pulvini of all grasses examined preferentially exclude, or accumulate very little silica, whereas the regions of the shoot immediately above and below the pulvini in these same grasses accumulate large quantities of silica. Pulvini remain unsilicified or poorly silicified throughout their life and even after several days following geotropic bending. Pulvini are also distinguished from the regions above and below them by the lack of lignin in the bundle cap cells. Lignin is found only in the xylem vascular tissue, and this consists of annular and helical vessel elements only. The bundle cap cells are rich in pectin and are described as collenchymatous. All pulvini possess specialized zones of cells containing starch statoliths. In response to horizontal displacement of the shoots, the lower side of the pulvini grows by cell elongation only. The collenchymatous cells stretch in a manner that results in alternately thin and thick regions of cell wall.  相似文献   

6.
Legume plants, due to their distinctive botanical characteristics, such as leaf movements, physiological characteristics, such as nitrogen fixation, and their abilities to endure environmental stresses, have important roles in sustainable pastures development. Leaf movement of legume plants is turgor regulated and osmotically active fluxes of ions between extensor and flexor of pulvinus cause this movement. To determine the role of calcium ions in circadian leaf movements of Phaseolus vulgaris L., a radiotracer technique experiment using 45Ca ions were employed. Measurements were taken during circadian leaf movements, and samples were taken from different parts of the leaflet. The 45Ca β-particle activity reduced from leaflet base pulvinus to leaf tip. The pulvinus had the highest activity, while the leaf tip had the lowest. By increase of the ratio of 45Ca β-particle activity within flexor to extensor (Fl/Ex) the midrib-petiole angle, as an indicator of leaf movement, increased linearly during circadian leaf movement (r = 0.86). The 45Ca β-particle activity of Flex/Ext ratio reduced linearly (r = −0.88) toward midnight. In conclusion, it was found that calcium ions accumulation is opposite to the fluxes of osmatically active ions and water movement. Calcium ions accumulate at less negative water potential side of the pulivnus.Key words: pulvinus, extensor, flexor, leaf movement, rhythm, circadian, calcium, Phaseolus vulgaris, radioactive  相似文献   

7.
The movement of Samanea saman (Jacq.) Merrill leaflets is a consequence of the re-distribution of K+ and anions between motor cells on opposite sides of the pulvinus. We used a K+-sensitive microelectrode to study dynamic changes in K+ transport through motor-cell membranes during and immediately after change in illumination. Potassium-ion-sensitive and reference microelectrodes were inserted into extensor or flexor tissue of a whole pulvinus in white light (WL). A brief pulse of red light (RL) followed by darkness (D) (a) increased K+ activity in the extensor apoplast, indicating K+ release by the protoplast; and (b) decreased K+ activity in the flexor apoplast, indicating K+ uptake by the protoplast. White light after 35–40 min D reversed K+ activity in the extensor apoplast to approximately its original value. Blue light substituted partially for WL in this regard. Potassium-ion activity in the flexor apoplast reverted to approximately its original value after 2 h, with or without white illumination. Our data support the hypothesis that K+ efflux from extensor cells and K+ uptake by flexor cells following a WLRLD transition occurs by way of K+ channels.Abbreviations L light - WL white light - RL red light - BL blue light - D darkness  相似文献   

8.
Moran N 《FEBS letters》2007,581(12):2337-2347
"Osmotic Motors"--the best-documented explanation for plant leaf movements--frequently reside in specialized motor leaf organs, pulvini. The movements result from dissimilar volume and turgor changes in two oppositely positioned parts of the pulvinus. This Osmotic Motor is powered by a plasma membrane proton ATPase, which drives KCl fluxes and, consequently, water, across the pulvinus into swelling cells and out of shrinking cells. Light signals and signals from the endogenous biological clock converge on the channels through which these fluxes occur. These channels and their regulatory pathways in the pulvinus are the topic of this review.  相似文献   

9.
H. Otsiogo-Oyabi  G. Roblin 《Planta》1984,161(5):404-408
Glycine (1–50 mM) increases the rate of the dark-induced (scotonastic) movements and decreases the amplitude and the rate of the light-induced (photonastic) movements of the secondary pulvini of Mimosa pudica leaves. The uptake of glycine is accompanied by a long-lasting dose-dependent increase in the alkalinity of the bathing medium of the excised pulvini. The data are in agreement with a H+-glycine co-transport mechanism within the pulvinar cells. Fusicoccin (50 M), known to promote H+–K+ exchange, antagonizes the effects of glycine on the movements and the alkalization of the bathing medium of the excised pulvini. The present results argue for the hypothesis that proton fluxes mediate the scotonastic and photonastic pulvinar movements.Abbreviations Gly glycine - FC fusicoccin - P1 primary pulvinus - P2 secondary pulvinus  相似文献   

10.
Summary Horizontally-placed segments of Avena sativa L. shoots show a negative geotropic response after a period of 30 min. This response is based on cell elongation on the lower side of the leaf-sheath base (pulvinus). Triticum aestivum L., Hordeum vulgare L. and Secale cereale L. also show geotropic responses that are similar to those in Avena shoots. The pulvinus is a highly specialized organ with radial symmetry and is made up of epidermal, vascular, parenchymatous and collenchymatous tissues. Statoliths, which are confined to parenchyma cells around the vascular bundles, sediment towards the gravitational field within 10–15 min of geotropic stimulation. Collenchymatous cells occur as prominent bundle caps, and in Avena, they occupy about 30% of the volume of the pulvinus. Geotropic stimulation causes a 3- to 5-fold increase in the length of the cells on the side nearest to the center of the gravitational field. Growth can also be initiated in vertically-held pulvini by the application of indole-3-acetic acid, 1-naphthaleneacetic acid or 2.4-dichlorophenoxyacetic acid. 2.3.5.-triiodobenzoic acid interferes with growth response produced by geotropic stimulation as well as with the response caused by auxin application. Gibberellic acid and kinetin have no visible effect on the growth of the pulvinus. Polarization microscopy shows a unique, non-uniform stretching of the elongating collenchymatous cells. Nonelongated collenchymatous cells appear uniformally anisotropic. After geotropic stimulation or auxin application, they appear alternately anisotropic and almost isotropic. Such a pattern of cell elongation is also observed in collenchyma cells of geotropically-stimulated shoots of Rumex acetosa L., a dicotyledon.Abbreviations 2.4-D 2.4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA l-naphthaleneacetic acid - TIBA 2.3.5-triiodobenzoic acid  相似文献   

11.
Samanea leaflets usually open in white light and fold together when darkened, but also open and dose with a circadian rhythm during prolonged darkness. Leaflet movement results from differential changes in the turgor and shape of motor cells on opposite sides of the pulvinus; extensor cells expand during opening and shrink during closure, while flexor cells shrink during opening and expand during closure but change shape more than size. Potassium in both open and closed pulvini is about 0.4 N. Flame photometric and electron microprobe analyses reveal that rhythmic and light-regulated postassium flux is the basis for pulvinar turgor movements. Rhythmic potassium flux during darkness in motor cells in the extensor region involves alternating predominance of inwardly directed ion pumps and leakage outward through diffusion channels, each lasting ca 12 h. White light affects the system by activating outwardly directed K+ pumps in motor cells in the flexor region.  相似文献   

12.
Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves.  相似文献   

13.
W. -E. Mayer 《Planta》1981,152(4):292-301
The energy requirements of the various phases of the circadian clock in the laminar pulvini cells of primary leaves of Phaseolus coccineus L. were investigated using 4-h pulses of NaCN (5 mM) and NaN3 (1 mM). The induced phase shifts were calculated from the timing of the subjective night position during the third cycle after the treatment. Both inhibitors produce advances during phases which are correlated with the upward movement of the leaf (ca. 0–12 h after the maximum of the subjective night position) and during phases which are correlated with the downward movement of the leaf (ca. 20–28 h after the maximum of the subjective night position). Maximal advances are induced during the phase which is correlated with the maximum of the subjective night position (hour 0), whereas during phases which are correlated with the subjective day position (ca. 12–20 h after the maximum of the subjective night position) the inhibitors have no effect or induce only small advances. These results demonstrate that the part of the circadian cycle which, according to Bünning's tension-relaxation model of the circadian clock, is characterized by features of relaxation, represents a sequence of phases with decreasing energy requirement, whereas the tension part of the circadian cycle represents a sequence of phases with increasing energy requirement. The energy requirement for changing and maintaining the leaf positions was investigated by continuously offering NaCN, NaN3, and dinitrophenol (DNP) to leaves with intact and half (flexor cut away) pulvini. The substances inhibit in both pulvini the upward movement or induce a downward movement, depending on the leaf position, when the transfer to the inhibitor solution takes place. These results give evidence that the movement of intact pulvini reflects the turgor (volume) state of the extensor cells and that the increase of turgor (volume) and high turgor (volume) state requires more energy than the decrease of turgor (volume) or low turgor (small volume) state. Therefore, the time course of the energy requirements of the circadian clock and the clock-controlled turgor (volume states or leaf movement) is out of phase during a circadian cycle. Consequently the reaction of the clock-controlled leaf movement to the reduced energy supply can mask the clock behavior in pulse and step experiments. The phase response curves towards CN- and N 3 - reflect the time course of the CN--induced membrane depolarizations (the energy requirement of the electrogenic pump) in extensor cells of the pulvinus (Freudling et al. (1980), Plant Physiol. 65, 966–968), and both are out of phase with the time course of the energy requirement of the turgor. Consequently it is hypothesized that in Phaseolus advances are due to membrane depolarization and that at least in this organism electric properties of the plasmalemma are essentially involved in the mechanism of the circadian clock.Abbreviations LD light-dark cycle - LL continuous light - DNP dinitrophenol This paper is dedicated to Professor Erwin Bünning on the occasion of his 75th birthdayIn this paper zero corresponds to the second maximum of the subjective night position of the leaves after transfer to constant conditions. Zero to twelve hours corresponds approximately to the upward movement of the leaves, 12–20 h to the elevated (subjective day) position, and 20–28 h to the downward movement of the leaves. In other circadian systems Pittendrigh's CT (circadian time) convention is used. CT 00 is the time of dawn after a 12-h light/12-h dark cycle. Since in Phaseolus the plants are raised in a LD cycle different from 12:12 and since the phases at dawn differ considerably from leaf to leaf and are furthermore not precisely determinable (whereas the subjective night position of the leaves is a well-defined and recognizable phase) this convention is not followed in Phaseolus. Phase zero in Phaseolus corresponds to approximately CT 18 in other systems  相似文献   

14.
Concentrations of K, Cl, P, S, and Ca in extensor and flexor protoplasts from open pulvini of the nyctinastic tree Samanea saman were estimated using x-ray microanalysis. This technique is particularly suitable when absolute numbers of protoplasts are low, because less than 100 protoplasts are required to obtain statistically significant data. Flexor protoplasts contain similar concentrations of P and S but almost twice as much K and Cl as extensor protoplasts. Low levels of total measurable osmoticum suggest that extensive leakage has occurred during protoplast isolation. Both extensor and flexor protoplasts appear to contain some unidentified osmoticum not detectable by x-ray analysis. Extensor protoplasts must have more unidentified osmoticum to compensate for their lower levels of K and Cl.  相似文献   

15.
The contents of K, Cl and Ca were determined in various partsof Mimosa pudica plant, namely in young internode (YI), agedinternode (AI), upper half (UP1), and lower half (LP1) of theprimary pulvinus, secondary pulvinus (P2), petiole (Pt) andleaflet blade (B1). Potassium is found in the following distributionYI = LP1 > P2 > UP1 > Pt > AI > B1 and is thuslocalized in parts showing a great metabolic activity. Chloridefollows the distribution of K except for the petiole and toa lesser extent for the young internode. Calcium content islow in the parts showing a high plasticity (pulvini and younginternode). A relationship is thus suggested between the amountof Ca and the rate of the movements which can be performed.The capacity for spontaneous and fusicoccin-induced H+ excretionis greater in the plant parts exhibiting the higher K content.This suggests that larger H+ fluxes may be required in tissuesshowing a high metabolic activity. Mimosa pudica, ion content, H+ excretion  相似文献   

16.
The laminar pulvinus of primary leaves of Phaseolus coccineus L. was investigated with respect to the total K+ content, the apoplastic K+ content, and the water potential of extensor and flexor sections in relation to the leaf positions in a circadian leaf-movement cycle, as well as the cation-exchange properties of isolated extensor- and flexor-cell walls. Turgid tissue showed a high total but low apoplastic K+ content, shrunken tissue a low total but high apoplastic K+ content. Thus, part of the K+ transported into and out of the swelling or shrinking protoplasts is shuttled between the protoplasts and the surrounding walls, another part between different regions of the pulvinus. The K+ fraction shuttled between protoplasts and walls was found to be 30–40% of the total transported K+ fraction. Furthermore, 15–20% of the total K+ content of the tissue is located in the apoplast when the apoplastic reservoir is filled, 5–10% when the apoplastic reservoir is depleted. The ion-exchange properties of walls of extensor and flexor cells appear identical in situ and in isolated preparations. The walls behave as cation exchangers of hhe weak-acid type with a strong dependence of the activity of fixed negative charges as well as of the K+-storing capacity on pH and [K+] of the equilibration solution. The high apoplastic K+ contents of freshly cut tissues reflect the cation-storing capacity of the isolated walls. We suggest that K+ ions of the Donnan free space are used for the reversible volume changes (mediating the leaf movement) mainly by an electrogenic proton pump which changes the pH and-or the [K+] in the water free space of the apoplast.Abbreviations and symbols DFS Donnan free space - DW dry weight - pK negative logarithm of the equilibrium constant K of the acidic group - WFS water free space - water potential; Indices - cw cell wall - t tissue  相似文献   

17.
G. Roblin  P. Fleurat-Lessard 《Planta》1987,170(2):242-248
When the leaves of Mimosa pudica are changed from their normal position in the gravitational field, they perform reversible compensatory movements by means of pulvini. These movements are not the result of growth processes but involve reversible turgor variations. These variation are concomitant with ion migrations within pulvini: during the gravitropic movement, K+ and Cl- shift towards the adaxial half of the motor organ whereas Ca2+ shifts towards the abaxial half. Compounds known to affect K+ transport, tetraethylammonium chloride and valinomycin, do not hinder the gravitropic movement but inhibit strongly the seismonastic reaction. The same general result is obtained with compounds affecting anion transport, disulfonic stilbenes and 9-anthracene carboxylic acid. Calcium chelators inhibit the gravitropic movement more efficiently than the seismonastic reaction and the calcium ionophore A 23 187 increases both movements. The data obtained with these various compounds indicate that ions do not have the same functional importance in the regulation of the two different pulvinar movements.Abbreviations abx abaxial half of the pulvinus - adx adaxial half of the pulvinus - 9-AC 9-anthracene carboxylic acid - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid - TEA tetraethylammonium chloride  相似文献   

18.
M Iino  C Long  X Wang 《Plant & cell physiology》2001,42(11):1219-1227
Protoplasts isolated from the laminar pulvinus of Phaseolus vulgaris and bathed in a medium containing KCl as the major salt were found to swell in response to IAA and to shrink in response to ABA. The protoplasts of flexor cells and those of extensor cells responded similarly. The results indicate that the cellular content of osmotic solutes is enhanced by IAA and reduced by ABA. The IAA-induced swelling was abolished when either the K(+) or the Cl(-) of the bathing medium was replaced by an impermeant ion or when the medium was adjusted to neutral pH (instead of pH 6). The response was inhibited by vanadate. It is concluded that the swelling is caused by enhanced influxes of K(+) and Cl(-), which probably occur through K(+) channels and Cl(-)/H(+) symporters, respectively. The ABA-induced shrinking was inhibited by 5-nitro-2-(3-phenylpropylamino)-benzoic acid, an anion-channel inhibitor, suggesting that it is caused by Cl(-) efflux through anion channels and charge-balancing K(+) efflux through outward-rectifying K(+) channels. It appears that the two plant hormones act on pulvinar motor cells to regulate their turgor pressure, as they do in stomatal guard cells. The findings are discussed in relation to the pulvinar movements induced by environmental stimuli.  相似文献   

19.
Leaf-sheath pulvini of excised segments from oat (Avena sativa L.) were induced to grow by treatment with 10 M indole-3-acetic acid (IAA), gravistimulation, or both, and the effects of calcium, EGTA, and calcium channel blockers on growth were evaluated. Unilaterally applied calcium (10 mM CaCl2) significantly inhibited IAA-induced growth in upright pulvini but had no effect on growth induced by either gravity or gravity plus IAA. Calcium alone had no effect on upright pulvini. The calcium chelator EGTA alone (10 mM) stimulated growth in upright pulvini. However, EGTA had no effect on either IAA-or gravity-induced growth but slightly diminished growth in IAA-treated gravistimulated pulvini. The calcium channel blockers lanthanum chloride (25 mM), verapamil (2.5 mM), and nifedipine (2.5 mM) greatly inhibited growth as induced by IAA (50% inhibition) or IAA plus gravity (20% inhibition) but had no effect on gravistimulated pulvini. Combinations of channel blockers were similar in effect on IAA action as individual blockers. Since neither calcium ions nor EGTA significantly affected the graviresponse of pulvini, we conclude that apoplastic calcium is unimportant in leaf-sheath pulvinus gravitropism. The observation that calcium ions and calcium channel blockers inhibit IAA-induced growth, but have no effect on gravistimulated pulvini, further supports previous observations that gravistimulation alters the responsiveness of pulvini to IAA.  相似文献   

20.
Summary Paired leaflets ofAlbizzia julibrissin spread apart (open) in the daytime and fold together (close) at night. We examined the structure of cells in open and closedAlbizzia motor organs (pulvini) to identify reversible changes in structure associated with motility. Pulvini were fixed in glutaraldehyde and stained using conventional methods. The pulvinus has a central vascular cylinder bordered by thick-walled collenchyma cells, in turn surrounded by an endodermis and many layers of cortical parenchyma. Cortical cells in the extensor undergo large changes in shape during leaflet closure linked with: formation of wall infoldings, development of a large periplasmic space filled with fibrils and membranes, development of lobes on the nucleus, evagination of the nuclear outer envelope membrane, break-up of the large central vacuole to form many small vacuoles, and linking of the plasmalemma to inner regions of the cytoplasm by microfilaments. Cortical cells in the flexor, by contrast, remain relatively stable during leaflet movement. Microtubules are present near the plasmalemma in both extensor and flexor cells; in the extensor, spherical coated vesicles are located near the microtubules. The possible function of these structures in regulating intracellular shuttling processes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号