首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A wee1 homolog, wee-1.1, is expressed in both a temporally and spatially restricted pattern during early Caenorhabditis elegans embryogenesis, and is undetectable throughout the remainder of embryogenesis. The wee-1.1 message appears to be zygotically expressed in the somatic founder cell E of the 12-cell embryo. This expression disappears when the E blastomere divides for the first time. The wee-1.1 message then appears transiently in the nuclei of the eight great-granddaughter cells of the AB somatic founder cell, just before these cells divide in the 16-cell embryo. Following this division, the wee-1.1 mRNA is no longer detectable throughout the remainder of embryogenesis. The expression of wee-1.1 in the E blastomere and in the AB progeny appears to be restricted to nuclei in prophase and metaphase of the cell cycle. Analysis of the wee-1.1 mRNA expression pattern in maternal-effect lethal mutants suggests that this expression pattern is restricted to cells of the E and AB fates in the early embryo. This mRNA expression pattern is restricted to a 10-15-min span of embryonic development and may be regulating the timing of crucial cell divisions at this early stage of development.  相似文献   

3.
4.
5.
J R Jacobs  Y Hiromi  N H Patel  C S Goodman 《Neuron》1989,2(6):1625-1631
Previous studies described three different classes of glial cells in the developing CNS of the early Drosophila embryo that prefigure and ensheath the major CNS axon tracts. Among these are 6 longitudinal glial cells on each side of each segment that overlie the longitudinal axon tracts. Here we use transformant lines carrying a P element containing a 130 bp sequence from the fushi tarazu gene in front of the lacZ reporter gene to direct beta-galactosidase expression in the longitudinal glia. Using this molecular lineage marker, we show that 1 of the "neuroblasts" in each hemisegment is actually a glioblast, which divides once symmetrically, in contrast to the typical asymmetric neuroblast divisions, producing 2 glial cells, which migrate medially and divide to generate the 6 longitudinal glial cells. As with neuroblasts, mutations in Notch and other neurogenic genes lead to supernumerary glioblasts. The results indicate that the glioblast is similar to other neuroblasts; however, the positionally specified fate of this blast cell is to generate a specific lineage of glia rather than a specific family of neurons.  相似文献   

6.
Eyes absent,a key repressor of polar cell fate during Drosophila oogenesis   总被引:3,自引:0,他引:3  
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.  相似文献   

7.
In early plant embryogenesis, the determination of cell fate in the protodermal cell layer is considered to be the earliest event in radial pattern formation. To elucidate the mechanisms of epidermal cell fate determination and radial pattern formation in early rice embryogenesis, we have isolated a GL2-type homeobox gene Roc1 (Rice outermost cell-specific gene1), which is specifically expressed in the protoderm (epidermis). In early rice embryogenesis, cell division occurs randomly and the morphologically distinct layer structure of the protoderm cannot be observed until the embryo reaches more than 100 microm in length. Nonetheless, in situ hybridization analyses revealed that specific expression of Roc1 in the outermost cells is established shortly after fertilization, much earlier than protoderm differentiation. In the regeneration process from callus, the Roc1 gene is also expressed in the outermost cells of callus in advance of tissue and organ differentiation, and occurs independently of whether the cells will differentiate into epidermis in the future or not. Furthermore, this cell-specific Roc1 expression could be induced flexibly in the newly produced outermost cells when we cut the callus. These findings suggest that the expression of Roc1 in the outermost cells may be dependent on the positional information of cells in the embryo or callus prior to the cell fate determination of the protoderm (epidermis). Furthermore, the Roc1 expression is downregulated in the inner cells of ligule, which have previously been determined as protodermal cells, also suggesting that the Roc1 expression is position dependent and that this position dependent Roc1 expression is important also in post-embryonic protoderm (epidermis) differentiation.  相似文献   

8.
Detailed expression analysis of the Norway spruce (Picea abies [L.] Karst) Viviparous 1 (Pavp1) and p34cdc2 (cdc2Pa) genes was carried out during somatic embryogenesis. Pavp1, a gene associated with embryo development, was expressed in proliferating embryogenic suspension cultures in the absence of exogenous ABA. When somatic embryo formation was promoting by blocking proliferation, Pavp1 expression was reduced. During maturation, exogenous ABA induced increased Pavp1 expression, which peaked at the early cotyledonary stage of somatic embryogenesis. Following partial desiccation of mature somatic embryos at high relative humidity, Pavp1 expression persisted under germination conditions. Pavp1 expression was also detected in non-dormant immature male strobili and dormant terminal buds. These data confirm the functional conservation of Pavp1 during the evolution of seed plants and extend its function beyond the embryo. Cdc2Pa, a gene associated with the cell cycle, was up-regulated when the proliferation of embryogenic cells was blocked. Expression was again up-regulated in early embryogeny and again during germination. The implications of this up-regulation of cdc2Pa are discussed.  相似文献   

9.
In brown algae fertilization takes place free from surrounding tissue layers. The cytoskeleton and transmembrane links to the cell wall are involved in establishing and stabilizing the polar axis and in determining the fate of cells in the early embryo. In seed plants, the egg cell and zygote exhibit apical basal polarity. Mutant studies suggest that axes of polarity of the early embryo depend on signalling between the apical and basal compartments, possibly involving auxin. Development of somatic cells into plant embryos involves extracellular matrix-derived arabinogalactan proteins. This suggests a role for the cell wall in plant embryogenesis.  相似文献   

10.
11.
One of the first signs of cell differentiation in the Drosophila melanogaster embryo occurs 3 h after fertilization, when discrete groups of cells enter their fourteenth mitosis in a spatially and temporally patterned manner creating mitotic domains (Foe, V. E. and G. M. Odell, 1989, Am. Zool. 29:617-652). To determine whether cell residency in a mitotic domain is determined solely by cell position in this early embryo, or whether cell lineage also has a role, we have developed a technique for directly analyzing the behavior of nuclei in living embryos. By microinjecting fluorescently labeled histones into the syncytial embryo, the movements and divisions of each nucleus were recorded without perturbing development by using a microscope equipped with a high resolution, charge-coupled device. Two types of developmental maps were generated from three-dimensional time-lapse recordings: one traced the lineage history of each nucleus from nuclear cycle 11 through nuclear cycle 14 in a small region of the embryo; the other recorded nuclear fate according to the timing and pattern of the 14th nuclear division. By comparing these lineage and fate maps for two embryos, we conclude that, at least for the examined area, the pattern of mitotic domain formation in Drosophila is determined by the position of each cell, with no effect of cell lineage.  相似文献   

12.
The precise match between somatic muscles and their epidermal attachment cells is achieved through a continuous dialogue between these two cell types. Whereas tendon cells direct myotube migration and final patterning, the muscles are essential for the maintenance of the fate of tendon cells. The Drosophila neuregulin-like ligand, Vein, and its receptor, the epidermal growth factor receptor (Egfr), are critical components in the inductive signaling process that takes place between muscles and tendon cells. Additional gene products that relay the Vein-Egfr effect in Drosophila are conserved in the vertebrate neuregulin-mediated cascade. This review describes genetic and molecular aspects of the muscle-tendon inductive processes in Drosophila, and compares them with the relevant mechanisms in the vertebrate embryo.  相似文献   

13.
The maintenance of stem cells in defined locations is crucial for all multicellular organisms. Although intrinsic factors and signals for stem cell fate have been identified in several species, it has remained unclear how these connect to the ability to reenter the cell cycle that is one of the defining properties of stem cells. We show that local reduction of expression of the RETINOBLASTOMA-RELATED (RBR) gene in Arabidopsis roots increases the amount of stem cells without affecting cell cycle duration in mitotically active cells. Conversely, induced RBR overexpression dissipates stem cells prior to arresting other mitotic cells. Overexpression of D cyclins, KIP-related proteins, and E2F factors also affects root stem cell pool size, and genetic interactions suggest that these factors function in a canonical RBR pathway to regulate somatic stem cells. Expression analysis and genetic interactions position RBR-mediated regulation of the stem cell state downstream of the patterning gene SCARECROW.  相似文献   

14.
In eukaryotic cells, the basic machinery of cell cycle control is highly conserved. In particular, many cellular events during cell cycle progression are controlled by cyclin-dependent kinases (CDKs). The cell cycle in animal early embryos, however, differs substantially from that of somatic cells or yeasts. For example, cell cycle checkpoints that ensure that the sequence of cell cycle events is correct have been described in somatic cells and yeasts but are largely absent in embryonic cells. Furthermore, the regulation of CDKs is substantially different in the embryonic and somatic cells. In this study, we address the nature of the first cell cycle in the brown alga Fucus, which is evolutionarily distant from the model systems classically used for cell cycle studies in embryos. This cycle consists of well-defined G1, S, G2, and M phases. The purine derivative olomoucine inhibited CDKs activity in vivo and in vitro and induced different cell cycle arrests, including at the G1/S transition, suggesting that, as in somatic cells, CDKs tightly control cell cycle progression. The cell cycle of Fucus zygotes presented the other main features of a somatic cell cycle, such as a functional spindle assembly checkpoint that targets CDKs and the regulation of the early synthesis of two PSTAIRE CDKs, p32 and p34, and the associated histone H1 kinase activity as well as the regulation of CDKs by tyrosine phosphorylation. Surprisingly, the synthesis after fertilization of p32 and p34 was translationally regulated, a regulation not described previously for CDKs. Finally, our results suggest that the activation of mitotic CDKs relies on an autocatalytic amplification mechanism.  相似文献   

15.
The germ cell lineage segregates from the somatic cell lineages in early embryos. Germ cell determination in mice is not regulated by maternally inherited germplasm, but is initiated within the embryo during gastrulation. However, the mechanisms of germ cell specification in mice remain unknown. We located precursors to primordial germ cells (PGCs) within early embryos, and show here that cell-cell interaction among these precursors is required for germ cell specification. We found that the expression of a calcium-dependent cell adhesion molecule, E-cadherin, is restricted to the proximal region of extra-embryonic mesoderm that contains PGC precursors, and that blocking the functions of E-cadherin with an antibody inhibits PGC formation in vitro. These results showed that E-cadherin-mediated cell-cell interaction among cells containing PGC precursors is essential to directing such cells to the germ cell fate.  相似文献   

16.
Previous studies have reported that promoters requiring enhancers for full activity in mammalian somatic cells also require enhancers when injected into mouse two-cell embryos, whereas the same promoters can be expressed just as efficiently in the absence of an enhancer when injected into arrested one-cell embryos. Experiments were designed to determine whether this phenomenon reflected normal developmental changes at the beginning of mammalian development, or simply differences in the physiological states of these cells under the experimental conditions employed. The activity of three different promoters that function in a wide variety of mammalian cells was measured both in embryos whose morphological development was arrested and in embryos that continued development in vitro. Expression of the injected gene was related to the onset of zygotic gene expression ("zygotic clock"), the phase of the cell proliferation cycle, the use of aphidicolin to arrest cell proliferation, and formation of two-cell embryos in vitro and in vivo. The results demonstrated that promoter activity was tightly linked to zygotic gene expression, while the need for enhancers to stimulate promoter activity depended only on formation of a two-cell embryo. These results further support the hypothesis that the first mitosis induces a general repression of promoters prior to initiation of zygotic gene expression that is relieved specifically by enhancers.  相似文献   

17.
The laminar arrays of distinct cell types in the vertebrate retina are built by a histogenic process in which cell fate is correlated with birth order. To explore this co-ordination mechanistically, we altered the relative timing of cell cycle exit in the developing Xenopus retina and asked whether this affected the activity of neural determinants. We found that Xath5, a bHLH proneural gene that promotes retinal ganglion cell (RGC) fate, ( Kanekar, S., Perron, M., Dorsky, R., Harris, W. A., Jan, L. Y., Jan, Y. N. and Vetter, M. L. (1997) Neuron 19, 981-994), does not cause these cells to be born prematurely. To drive cells out of the cell cycle early, therefore, we misexpressed the cyclin kinase inhibitor, p27Xic1. We found that early cell cycle exit potentiates the ability of Xath5 to promote RGC fate. Conversely, the cell cycle activator, cyclin E1, which inhibits cell cycle exit, biases Xath5-expressing cells toward later neuronal fates. We found that Notch activation in this system caused cells to exit the cell cycle prematurely, and when it is misexpressed with Xath5, it also potentiates the induction of RGCs. The potentiation is counteracted by co-expression of cyclin E1. These results suggest a model of histogenesis in which the activity of factors that promote early cell cycle exit enhances the activity of factors that promote early cellular fates.  相似文献   

18.
19.
Somatic embryogenesis is a powerful tool for plant regeneration and also provides a suitable material for investigating the molecular events that control the induction and development of somatic embryos. This study focuses on expression analysis of the QrCPE gene (which encodes a glycine-rich protein) during the initiation of oak somatic embryos from leaf explants and also during the histodifferentiation of somatic embryos. Northern blot and in situ hybridization were used to determine the specific localisation of QrCPE mRNA. The results showed that the QrCPE gene is developmentally regulated during the histodifferentiation of somatic embryos and that its expression is tissue- and genotype-dependent. QrCPE was strongly expressed in embryogenic cell aggregates and in embryogenic nodular structures originated in leaf explants as well as in the protodermis of somatic embryos from which new embryos are generated by secondary embryogenesis. This suggests a role for the gene during the induction of somatic embryos and in the maintenance of embryogenic competence. The QrCPE gene was highly expressed in actively dividing cells during embryo development, suggesting that it participates in embryo histodifferentiation. The localised expression in the root cap initial cells of cotyledonary somatic embryos and in the root cap of somatic seedlings also suggests that the gene may be involved in the fate of root cap cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号