首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the songbird brain, dehydroepiandrosterone (DHEA) is metabolized to the active and aromatizable androgen androstenedione (AE) by 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD). Thus, brain 3β-HSD plays a key role in regulating the steroidal milieu of the nervous system. Previous studies have shown that stress rapidly regulates brain 3β-HSD activity in a sex-specific manner. To elucidate endocrine regulation of brain 3β-HSD, we asked whether 17β-estradiol (E2) regulates DHEA metabolism in adult zebra finch ( Taeniopygia guttata ) and whether there are sex-specific effects. Brain tissue was homogenized and centrifuged to obtain supernatant lacking whole cells and cell nuclei. Supernatant was incubated with [3H]DHEA and radioinert E2 in vitro . Within only 10 min, E2 significantly reduced 3β-HSD activity in both male and female brain. Interestingly, the rapid effects of E2 were more pronounced in females than males. These are the first data to show a rapid effect of estrogens on the songbird brain and suggest that rapid estrogen effects differ between male and female brains.  相似文献   

2.
In many species, male territorial aggression is tightly coupled with gonadal secretion of testosterone (T). In contrast, in song sparrows (Melospiza melodia morphna), males are highly aggressive during the breeding (spring) and nonbreeding (autumn and early winter) seasons, but not during molt (late summer). In aggressive nonbreeding song sparrows, plasma T levels are basal (< or = 0.10 ng/ml), and castration has no effect on aggression. However, aromatase inhibitors reduce nonbreeding aggression, indicating a role for estrogen in wintering males. In the nonbreeding season, the substrate for brain aromatase is unclear, because plasma T and androstenedione levels are basal. Aromatizable androgen may be derived from plasma dehydroepiandrosterone (DHEA), an androgen precursor. DHEA circulates at elevated levels in wintering males (approximately 0.8 ng/ml) and might be locally converted to T in the brain. Moreover, plasma DHEA is reduced during molt, as is aggression. Here, we experimentally increased DHEA in wild nonbreeding male song sparrows and examined territorial behaviors (e.g., singing) and discrete neural regions controlling the production of song. A physiological dose of DHEA for 15 days increased singing in response to simulated territorial intrusions. In addition, DHEA treatment increased the volume of a telencephalic brain region (the HVc) controlling song, indicating that DHEA can have large-scale neuroanatomical effects in adult animals. The DHEA treatment also caused a slight increase in plasma T. Exogenous DHEA may have been metabolized to sex steroids within the brain to exert these behavioral and neural effects, and it is also possible that peripheral metabolism contributed to these effects. These are the first results to suggest that exogenous DHEA increases male-male aggression and the size of an entire brain region in adults. The data are consistent with the hypothesis that DHEA regulates territorial behavior, especially in the nonbreeding season, when plasma T is basal.  相似文献   

3.
Male zebra finches learn to imitate a tutor's song through auditory and motor learning. The two main song control nuclei in the zebra finch forebrain, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), receive cholinergic innervation from the ventral paleostriatum (VP) of the basal forebrain which may play a key role in song learning. By injecting neuroanatomical tracers, we found a topographically segregated pathway from nucleus ovoidalis (Ov) to VP that in turn projects in a topographic fashion to HVC and RA. Ov is a major relay in the main ascending auditory pathway. The results suggest that the cholinergic neurons in the VP responsible for song learning are regulated by auditory information from the Ov.  相似文献   

4.
Biological systems by default involve complex components with complex relationships. To decipher how biological systems work, we assume that one needs to integrate information over multiple levels of complexity. The songbird vocal communication system is ideal for such integration due to many years of ethological investigation and a discreet dedicated brain network. Here we announce the beginnings of a songbird brain integrative project that involves high-throughput, molecular, anatomical, electrophysiological and behavioral levels of analysis. We first formed a rationale for inclusion of specific biological levels of analysis, then developed high-throughput molecular technologies on songbird brains, developed technologies for combined analysis of electrophysiological activity and gene regulation in awake behaving animals, and developed bioinformatic tools that predict causal interactions within and between biological levels of organization. This integrative brain project is fitting for the interdisciplinary approaches taken in the current songbird issue of the Journal of Comparative Physiology A and is expected to be conducive to deciphering how brains generate and perceive complex behaviors.  相似文献   

5.
Sexual differentiation of the brain has traditionally been thought to be driven by gonadal hormones, particularly testosterone (T). Recent studies in songbirds and other species have indicated that non-gonadal sex steroids may also be important. For example, dehydroepiandrosterone (DHEA) - a sex steroid precursor that can be synthesized in the adrenal glands and/or brain - can be converted into active sex steroids, such as 17β-estradiol (E2), within the brain. Here, we examine plasma DHEA and E2 levels in wild developing European starlings (Sturnus vulgaris), from hatch (P0) to fledging (P20). Blood samples were collected from either the brachial vein (n = 143) or the jugular vein (n = 129). In songbirds, jugular plasma is enriched with neurally-synthesized steroids and, therefore, jugular plasma is an indirect measure of the neural steroidal milieu. Interestingly, brachial DHEA levels were higher in males than females at P4. In contrast, jugular DHEA levels were higher in females than males at P0 and P10. Brachial E2 levels were higher in males than females at P6. Surprisingly, jugular E2 levels were not high and showed no sex differences. Also, we calculated the difference between brachial and jugular steroid levels. At several ages, jugular steroid levels were lower than brachial levels, particularly in males, suggesting greater neural metabolism of circulating DHEA and E2 in males than females. At a few ages, jugular steroid levels were higher than brachial levels, suggesting neural secretion of DHEA or E2 into the general circulation. Taken together, these data suggest that DHEA may play a role in brain sexual differentiation in songbirds.  相似文献   

6.
During the nonbreeding season, when gonadal androgen synthesis is basal, recent evidence suggests that neurosteroids regulate the aggression of male song sparrows. In particular, dehydroepiandrosterone (DHEA) is rapidly converted in the brain to androgens in response to aggressive interactions. In other species, aggressive encounters increase systemic glucocorticoid levels. However, the relationship between aggression and local steroid levels is not well understood. Here, during the breeding and nonbreeding seasons, we tested the effects of a simulated territorial intrusion (STI) on DHEA and corticosterone levels in the brachial and jugular plasma. Jugular plasma is enriched with neurosteroids and provides an indirect index of brain steroid levels. Further, during the nonbreeding season, we directly measured steroid levels in the brain and peripheral tissues. Both breeding and nonbreeding males displayed robust aggressive responses to STI. During the breeding season, STI increased brachial and jugular corticosterone levels and jugular DHEA levels. During the nonbreeding season, STI did not affect plasma corticosterone levels, but increased jugular DHEA levels. During the nonbreeding season, STI did not affect brain levels of corticosterone or DHEA. However, STI did increase corticosterone and DHEA concentrations in the liver and corticosterone concentrations in the pectoral muscle. These data suggest that 1) aggressive social interactions affect neurosteroid levels in both seasons and 2) local steroid synthesis in peripheral tissues may mobilize energy reserves to fuel aggression in the nonbreeding season. Local steroid synthesis in brain, liver or muscle may serve to avoid the costs of systemic increases in corticosterone and testosterone.  相似文献   

7.
8.
Neurogenesis proceeds throughout life in the higher vocal center (HVC) of the adult songbird neostriatum. Testosterone induces neuronal addition and endothelial division in HVC. We asked if testosterone-induced angiogenesis might contribute importantly to HVC neuronal recruitment. Testosterone upregulated both VEGF and its endothelial receptor, VEGF-R2/Quek1/KDR, in HVC. This yielded a burst in local HVC angiogenesis. FACS-isolated HVC endothelial cells produced BDNF in a testosterone-dependent manner. In vivo, HVC BDNF rose by the third week after testosterone, lagging by over a week the rise in VEGF and VEGF-R2. In situ hybridization revealed that much of this induced BDNF mRNA was endothelial. In vivo, both angiogenesis and neuronal addition to HVC were substantially diminished by inhibition of VEGF-R2 tyrosine kinase. These findings suggest a causal interaction between testosterone-induced angiogenesis and neurogenesis in the adult forebrain.  相似文献   

9.
Birds living in social groups establish dominance hierarchies, and taking up the dominant position influences behaviour and physiological parameters. In cooperatively breeding white-browed sparrow weavers (Plocepasser mahali), the transition from subordinate helper to dominant breeder male induces the production of a new type of song. This song contains a large number of new syllables and differs in temporal pattern from duet songs produced by all other group members. Here we show that this change in social status of adult males affects the morphology of a behavioural control circuit, the song control system of songbirds that is composed of large neuron populations. The volume of the song control areas HVC and RA and their gene-expression levels depend on males' social status. Dominant males have several times larger testes than subordinates, which is not reflected in circulating androgen and oestrogen levels. Our findings suggest a remarkable differentiation of adult vertebrate brains in relation to changing social cues.  相似文献   

10.
Voigt C  Gahr M 《PloS one》2011,6(6):e20723
It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure-function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2-10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male-female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female-subordinate male comparisons or female-biased in female-dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males.  相似文献   

11.
12.
Estrogens play a crucial role in multiple functions of the brain and the proper balance of inactive estrone and active estradiol-17beta might be very important for their cerebral effects. The interconversion of estrone and estradiol-17beta in target tissues is known to be catalysed by a number of human 17beta-hydroxysteroid dehydrogenase (17beta-HSD) isoforms. The present study shows that enzyme catalysed interconversion of estrone and estradiol-17beta occurs in the human temporal lobe. The oxidative cerebral pathway preferred estradiol-17beta to Delta(5)-androstenediol and testosterone, whereas the reductive pathway preferred dehydroepiandrosterone (DHEA) to Delta(4)-androstenedione and estrone. An allosteric Hill kinetic for NAD-dependent oxidation of estradiol-17beta was observed, whereas a typical Michaelis-Menten kinetic was shown for NADPH-dependent reduction of estrone. Investigations of the interconversion of estrogens in cerebral neocortex (CX) and subcortical white matter (SC) preparations of brain tissue from 12 women and 10 men revealed no sex-differences, but provide striking evidence for the presence of at least one oxidative membrane-associated 17beta-HSD and one cytosolic enzyme that catalyses both the reductive and the oxidative pathway. Membrane-associated oxidation of estradiol-17beta was shown to be significantly higher in CX than in SC (P<0.05), whereas the cytosolic enzyme activities were significantly higher in SC than in CX (P<0.0005). Finally, real-time RT-PCR analyses revealed that besides 17beta-HSD types 4 and 5 also the isozymes type 7, 8, 10 and 11 show substantial expression in the human temporal lobe. The characteristics of the isozymes lead us to the conclusion that cytosolic 17beta-HSD type 5 is the best candidate for the observed cytosolic enzyme activities, whereas the data gave no clear answer to the question, which enzyme is responsible for the membrane-associated oxidation of estradiol-17beta. In conclusion, the study strongly suggests that different cell types and different isozymes are involved in the cerebral interconversion of estrogens, which might play a pivotal role in maintaining the functions of the central nervous system.  相似文献   

13.
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. 11beta-HSD1 has been studied as a potential treatment for metabolic disease such as diabetes and obesity. To find correlation between 11beta-HSD1 and inhibitors, three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on 70 inhibitors, based on molecular docking conformations obtained by using FlexX-Pharm. The studies include comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Based on the docking results, highly predictive 3D-QSAR models were developed with q(2) values of 0.543 and 0.519 for CoMFA and CoMSIA, respectively. A comparison of the 3D-QSAR field contributions with the structural features of the binding site showed good correlation between the two analyses. Therefore, these results should be useful to the prediction of the activities of new 11beta-HSD1 inhibitors.  相似文献   

14.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white-crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5alpha-dihydrotestosterone (DHT), estradiol (E(2)), or a combination of DHT+E(2). Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E(2) alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank-implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites.  相似文献   

15.
Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds.  相似文献   

16.
Recent research in mammals supports a link between cognitive ability and the gut microbiome, but little is known about this relationship in other taxa. In a captive population of 38 zebra finches (Taeniopygia guttata), we quantified performance on cognitive tasks measuring learning and memory. We sampled the gut microbiome via cloacal swab and quantified bacterial alpha and beta diversity. Performance on cognitive tasks related to beta diversity but not alpha diversity. We then identified differentially abundant genera influential in the beta diversity differences among cognitive performance categories. Though correlational, this study provides some of the first evidence of an avian microbiota–gut–brain axis, building foundations for future microbiome research in wild populations and during host development.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) is important in supporting neuronal development. BDNF imbalance due to excessive neuronal inhibition can result in the apoptotic degeneration of developing neurons. Since general anesthetics cause profound depression of neuronal activity and are known to induce widespread degeneration in the developing brain, we studied their potential to activate BDNF-mediated developmental neuroapoptosis. When P7 rats (at the peak of brain development) were exposed to a commonly-used and highly pro-apoptotic anesthesia protocol (midazolam, isoflurane, nitrous oxide) for a period of 2, 4 or 6 h, we found that anesthesia modulates the key steps in BDNF-activated apoptotic cascade in two of the most vulnerable brain regions—cerebral cortex and thalamus in time-dependent fashion by activating both Trk-dependent (in thalamus) and Trk-independent p75NTR dependent (in cerebral cortex) neurotrophic pathways. β-estradiol, a sex hormone that upregulates the protein levels of the activated Akt, protects against anesthesia-induced neuroapoptosis.  相似文献   

18.
19.
20.
Social animals learn to perceive their social environment, and their social skills and preferences are thought to emerge from greater exposure to and hence familiarity with some social signals rather than others. Familiarity appears to be tightly linked to multisensory integration. The ability to differentiate and categorize familiar and unfamiliar individuals and to build a multisensory representation of known individuals emerges from successive social interactions, in particular with adult, experienced models. In different species, adults have been shown to shape the social behavior of young by promoting selective attention to multisensory cues. The question of what representation of known conspecifics adult-deprived animals may build therefore arises. Here we show that starlings raised with no experience with adults fail to develop a multisensory representation of familiar and unfamiliar starlings. Electrophysiological recordings of neuronal activity throughout the primary auditory area of these birds, while they were exposed to audio-only or audiovisual familiar and unfamiliar cues, showed that visual stimuli did, as in wild-caught starlings, modulate auditory responses but that, unlike what was observed in wild-caught birds, this modulation was not influenced by familiarity. Thus, adult-deprived starlings seem to fail to discriminate between familiar and unfamiliar individuals. This suggests that adults may shape multisensory representation of known individuals in the brain, possibly by focusing the young's attention on relevant, multisensory cues. Multisensory stimulation by experienced, adult models may thus be ubiquitously important for the development of social skills (and of the neural properties underlying such skills) in a variety of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号