首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Investigating the dynamics of ectomycorrhizal fungal (EMF) communities in seasonally dry tropical forests is essential for sustainable management and for understanding the resilience of this forest type in future climate change scenarios. EMF communities in secondary forest fragments with Shorea siamensis as a single host tree species in central Thailand were sampled seasonally for 2.5 y. Ten EMF taxa were identified from ectomycorrhizal morphotypes, with/tomentella-thelephora and/russula-lactarius as the dominant taxa. Seasonal differences in EMF diversity were not detected; the dominant morphotypes were present in both seasons and their abundance varied. Most EMF taxa exhibited wide environmental ranges and only a few taxa were correlated with soil moisture. Seasonal dynamics of ectomycorrhizal colonization was likely influenced by climatic factors and the phenology of host species. Together, these results suggested that climatic variation may have a long-term and subtle influence on the composition of ectomycorrhizal communities.  相似文献   

2.
Hubert NA  Gehring CA 《Mycorrhiza》2008,18(6-7):363-374
Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.  相似文献   

3.
Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree “islands” to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance vs. host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing of ITS amplicons, measured all relevant environmental parameters for each tree—including tree age, size and soil chemistry—and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modelling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free‐living and symbiotic fungal communities at fine spatial scales. In our study system, we found pH and organic matter primarily drive environmental filtering in total soil fungal communities and that pH and cation exchange capacity—and, surprisingly, not host species—were the largest factors affecting EMF community composition. These findings support an emerging paradigm that pH may play a central role in the assembly of all soil‐mediated systems.  相似文献   

4.
The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding.  相似文献   

5.
Plant–soil feedbacks have been observed in many forest communities, but the role of the mycorrhizal community in perpetuating feedback loops is still poorly understood. Mycorrhizal community composition is closely linked to soil properties and host plant composition, which highlights their potential importance in plant–soil–fungus loops. Eastern hemlock (hemlock; Tsuga canadensis) seedlings were grown in soil bioassays in growth chambers and transplanted under closed forest canopy to examine the effect of hardwood and hemlock forest soil on seedling growth, survival, and ectomycorrhizal fungi (EMF) colonization. Seedlings propagated in hemlock forest soil had greater height growth compared with sterile control soil and achieved greater mycorrhizal colonization than seedlings grown in hardwood forest soils after 9 months in a growth chamber. Outplanted seedlings grown in hemlock communities achieved significantly greater increment growth than those seedlings grown in hardwood communities (mean height difference (95% CI)?=?0.39 cm (0.14–0.63 cm)), although final survival and EMF colonization was similar between forest types. EMF diversity (Shannon-Wiener index (SE)?=?1.88 (0.28) and 1.23 (0.44) for hardwood and hemlock, respectively) and community assemblage (Jaccard index (SE)?=?19.0% (4%)) differed between the two forest communities. EMF community assemblage was associated with both the forest type (i.e. plant community/microsite effects) and initial soil type (i.e. soil characteristics/resistant inoculum). The results support previously observed positive feedbacks between conspecifics under hemlock forest communities and provides evidence for the role of the EMF community within this feedback loop. Alternatively, the reduced growth of hemlocks under hardwoods may be attributed to the different EMF community associated with that forest.  相似文献   

6.
Nitrogen is the main limiting nutrient in boreal ecosystems, but studies in southwest Sweden suggest that certain forests approach phosphorus (P) limitation driven by nitrogen (N) deposition. We added N, P or N + P to a Norway spruce forest in this region, to push the system to N or P limitation. Tree growth and needle nutrient concentrations indicated that the trees are P limited. EMF biomass was reduced only by N + P additions. Soil EMF communities responded more strongly to P than to N. Addition of apatite to ingrowth meshbags altered EMF community composition and enhanced the abundance of Imleria badia in the control and N plots, but not when P was added. The ecological significance of this species is discussed. Effects on tree growth, needle chemistry, and EMF communities indicate a dynamic interaction between EMF fungi and the nutrient status of trees and soils.  相似文献   

7.
The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root‐tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root‐tips examined, 50%–70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.  相似文献   

8.
The relationship between biodiversity and productivity has stimulated an increasing body of research over the past decades, and this topic still occupies a central place in ecology. While most studies have focused on biomass production in quadrats or plots, few have investigated the scale‐dependent relationship from an individual plant perspective. We present an analysis of the effects of biodiversity (species diversity and functional diversity) on individual tree growth with a data set of 16,060 growth records from a 30‐ha temperate forest plot using spatially explicit individual tree‐based methods. A significant relationship between species diversity and tree growth was found at the individual tree level in our study. The magnitude and direction of biodiversity effects varies with the spatial scale. We found positive effects of species diversity on tree growth at scales exceeding 9 m. Individual tree growth rates increased when there was a greater diversity of species in the neighborhood of the focal tree, which provides evidence of a niche complementarity effect. At small scales (3–5 m), species diversity had negative effects on tree growth, suggesting that competition is more prevalent than complementarity or facilitation in these close neighborhoods. The results also revealed many confounding factors which influence tree growth, such as elevation and available sun light. We conclude that the use of individual tree‐based methods may lead to a better understanding of the biodiversity‐productivity relationship in forest communities.  相似文献   

9.
Kermavnar  Janez  Kutnar  Lado  Marinšek  Aleksander 《Plant Ecology》2022,223(2):229-242

Species- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.

  相似文献   

10.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.  相似文献   

11.
Ectomycorrhizal fungal (EMF) communities vary among microhabitats, supporting a dominant role for deterministic processes in EMF community assemblage. EMF communities also differ between forest and clearcut environments, responding to this disturbance in a directional manner over time by returning to the species composition of the original forest. Accordingly, we examined EMF community composition on roots of spruce seedlings planted in three different microhabitats in forest and clearcut plots: decayed wood, mineral soil adjacent to downed wood, or control mineral soil, to determine the effect of retained downed wood on EMF communities over the medium and long term. If downed and decayed wood provide refuge habitat distinct from that of mineral soil, we would expect EMF communities on seedlings in woody habitats in clearcuts to be similar to those on seedlings planted in the adjacent forest. As expected, we found EMF species richness to be higher in forests than clearcuts (P ≤ 0.01), even though soil nutrient status did not differ greatly between the two plot types (P ≥ 0.05). Communities on forest seedlings were dominated by Tylospora spp., whereas those in clearcuts were dominated by Amphinema byssoides and Thelephora terrestris. Surprisingly, while substrate conditions varied among microsites (P ≤ 0.03), especially between decayed wood and mineral soil, EMF communities were not distinctly different among microhabitats. Our data suggest that niche partitioning by substrate does not occur among EMF species on very young seedlings in high elevation spruce-fir forests. Further, dispersal limitations shape EMF community assembly in clearcuts in these forests.  相似文献   

12.
Patterns and drivers of succession provide insight into the mechanisms that govern community assembly, but remain poorly understood for microbial communities. We assess whether successional trends of trees are mirrored by foliar endophyte communities of three tree species across a deterministic woody successional gradient. Additionally, we test the relative contribution of abiotic predictors, biotic factors, and spatial distance between sites in predicting composition and richness of endophyte communities. Unlike the tree community, endophyte communities showed no consistent evidence of deterministic succession. Host identity was the most important factor structuring endophyte community composition; within hosts, spatial distance from the indigenous forest and between samples was important, while environmental predictors had small and inconsistent effects. Much variation in endophyte composition remained unexplained. In contrast, endophyte richness was well-explained by predictor variables. Host identity was most important in predicting endophyte richness, while the effect of other predictors on richness differed between host species. We conclude that deterministic succession in trees did not result in deterministic succession in endophyte communities; instead community assembly was most strongly influenced by host identity; while within hosts, neutral processes may be more important for endophyte assembly than deterministic factors.  相似文献   

13.
Invasive species may leave behind legacies that persist even after removal, inhibiting subsequent restoration efforts. We examined the soil legacy of Cytisus scoparius, a nitrogen-fixing, putatively allelopathic shrub invading the western US. We tested the hypothesis that allelopathy plays a critical role in the depressive effect of Cytisus on the key native Douglas-fir, both directly on tree growth and indirectly via effects on its ectomycorrhizal fungi (EMF). In a greenhouse factorial experiment, we used activated carbon to inhibit Cytisus-produced allelochemicals and sucrose to reduce elevated nitrogen (N). We found that: (1) Cytisus-invaded soils depressed Douglas-fir growth compared to uninvaded forest soils. The effect of adding Cytisus litter was positive (possibly reflecting an N fertilization effect) only in the presence of activated carbon, providing evidence for a role of allelopathic compounds. Activated carbon did not increase growth in the absence of Cytisus litter. Finally, sucrose addition provided weak support for a nitrogen effect of Cytisus litter. (2) Seedlings grown in Cytisus soils had lower EMF abundance compared to those in uninvaded forest soils. In forest soil from one site, adding Cytisus litter also decreased EMF abundance. Douglas-fir growth increased significantly with EMF across sites and soils suggesting that changes in EMF were linked to tree growth. The fungal taxon Cenococcum geophilum was significantly depressed in Cytisus soils compared to forest soils, while Rhizopogon rogersii abundance was similar across soil types. These results together suggest an overall negative effect of Cytisus on the growth of a dominant native tree and its fungal symbionts. Our study suggests how the role of allelopathy in ecological restoration may play out on two time scales: through immediate, direct impacts on native plants as well as through long-term, persistent impacts mediated by the collapse or transformation of microbial communities.  相似文献   

14.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

15.
Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the ‘nugget’, which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.  相似文献   

16.
Aim  We aim to assess the impact of forest fragmentation on lepidopteran larval community and study the associations of microclimate and tree community with lepidopteran assemblage.
Location  Kibale National Park, Uganda.
Methods  We investigated the effects of forest fragmentation on leaf herbivory, density of lepidopteran caterpillars, species richness and diversity as well as the composition of herbivorous lepidopteran larval community. Microclimate, size of the fragment, distance to the continuous forest, and tree diversity were studied as possible explanatory factors. We sampled 10 Neoboutonia macrocalyx Pax. (Euphorbiaceae) trees in each fragment during dry and rainy season, total of four times, in a year to cover the seasonal variation.
Results  The rates of herbivory, total larval density and species richness were significantly lower in the forest fragments than in the continuous forest but species diversity expressed as Fisher's alpha did not differ. The dominance structure and community composition of the larval communities in the fragments was different from that of the continuous forest. None of the differences we observed were related to the fragment area or distance to the continuous forest. Instead, we found an indication of association between the herbivore and the tree communities. The fragments had significantly lower humidity during most of the day and higher temperature during the afternoons (14–17 h), which might partially explain the differences in lepidopteran larval communities.
Main conclusions  Decreased larval density and species richness as well as differences in the community composition and structure all highlight the importance of large continuous forest areas for maintaining larval biodiversity.  相似文献   

17.
Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.  相似文献   

18.
为探究森林群落树种组成对苔藓植物分布的影响,利用多元统计方法研究粤东亚热带地区苔藓植物的组成和分布对林分类型的响应。根据森林乔木层的树种组成划分为翻白叶树(Pterospermum heterophyllum)、木荷(Schima superba)+米锥(Castanopsis carlesii)和米锥3种森林类型。结果表明,3种森林类型中苔类(liverworts)和藓类(mosses)植物群落组成特征总体上存在显著差异;双齿裂萼苔(Chiloscyphus latifolius)和细指苔(Kurzia gonyotricha)在3种类型林分中的重要值变化指示了苔类植物群落的差异。3种类型林分中,均以东亚拟鳞叶藓(Pseudotaxiphyllum pohliaecarpum)为优势种。不同林分中藓类植物种类组成主要表现为亚优种分布的不同。这表明森林群落树种组成作为重要的生物因子,对林内苔藓植物的分布和种类组成有重要影响。  相似文献   

19.
The potential for mycorrhizae to influence the diversity and structuring of plant communities depends on whether their affinities and effects differ across a suite of potential host species. In order to assess this potential for a tropical forest community in Panama, we conducted three reciprocal inoculation experiments using seedlings from six native tree species. Seeds were germinated in sterile soil and then exposed to arbuscular mycorrhizal fungi in current association with naturally infected roots from adults of either the same or different species growing in intact forest. The tree species represent a range of life histories, including early successional pioneers, a persistent understory species, and emergent species, typical of mature forest. Collectively, these experiments show: (i) the seedlings of small-seeded pioneer species were more dependent on mycorrhizal inocula for initial survival and growth; (ii) although mycorrhizal fungi from all inocula were able to colonize the roots of all host species, the inoculum potential (the infectivity of an inoculum of a given concentration) and root colonization varied depending on the identity of the host seedling and the source of the inoculum; and (iii) different mycorrhizal fungal inocula also produced differences in growth depending on the host species. These differences indicate that host–mycorrhizal fungal interactions in tropical forests are characterized by greater complexity than has previously been demonstrated, and suggest that tropical mycorrhizal fungal communities have the potential to differentially influence seedling recruitment among host species and thereby affect community composition.  相似文献   

20.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号