首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the spectral sensitivities of the retinal visual pigments from the North Atlantic right whale (Eubalaena glacialis), we have cloned and sequenced two exons from the rod opsin gene and two exons from the middle‐wavelength sensitive (MWS) cone opsin gene in order to determine the amino acids at positions known to be key regulators of the spectral location of the absorbance maximum (λmax). Based on previous mutagenesis models we estimate that the right whale possesses a rod visual pigment with a λmax of 499 nm and a MWS cone visual pigment with a λmax of 524 nm. Although the MWS cone visual pigment from the right whale is blue‐shifted in its spectral sensitivity like those from odontocetes, the spectral sensitivity of the right whale rod visual pigment is similar to those from terrestrial mammals.  相似文献   

2.
Absorption spectra were obtained by microspectrophotometric (MSP) axial measurements of the compound rhabdom of the night moth Manduca sexta. Difference spectra derived from partial or complete bleaches revealed the evidence of four visual pigments with approximate λmax at 350, 450, 490, and 530 nm. Upon bleaching with light of the pigment maximum at 21°C, pH 7·4–8·5, each pigment, save the u.v.-sensitive one, formed a photoproduct whose spectral maximum (ca. 370 nm) was indicative of a mixture of free and bound retinal. Rarely, small amounts of an additional photoproduct (λmax 325–330 nm) formed, which is suggestive of retinol. The u.v.-sensitive pigment, when irradiated with u.v., formed an unknown photoproduct (λmax 290–300 nm). Bleaching kinetics were of first order. Separate absorption determinations through lens or crystalline cones showed each component of the dioptric apparatus served as a filter effecting a sharp decrease in corneal transmission at 310 nm while being increasingly transparent from near u.v. to red. The survival benefits accruing to a largely nocturnal moth with a presumptive colour vision mechanism are discussed.  相似文献   

3.
In this study, we describe a one-step chemoenzymatic reaction for the production of natural blue pigments, in which the geniposide from Gardenia extracts is transformed by glycosidases to genipin. Genipin is then allowed to react with amino acids, thereby generating a natural blue pigment. The β-glycosidases, most notably isolase (a variant of β-glucanase), recombinant β-glucosidase, Cellulase T, and amylases, were shown to hydrolyze geniposide to produce the desired pigments, whereas the α-glycosidases did not. Among the 20 tested amino acids, glycine and tyrosine were associated with the highest dye production yields. The optimal molar ratio of geniposide to glycine, two reactants relevant to pigment production, was unity. The natural blue pigments produced in this study were used to dye cotton, silk, and wool. The color yields of the pigments were determined to be significantly higher than those of other natural dyes. Furthermore, the color fastness properties of these dyes were fairly good, even in the absence of mordant.  相似文献   

4.
Hydrolyses of N-acylated peptide ester substrates by various serine alkaline proteinases from bacterial and mold origin were compared using Ac- or Z-(Ala)m-X-OMe (m = 0-2 or 0-3; X = phenylalanine, alanine, and lysine) as esterase substrates. The results indicated that the esterase activities of these enzymes were markedly promoted by elongating the peptide chain from P1 to P2 or P3 with alanine, irrespective of the kind of the amino acid residue at the P1-position (amino acid residues in peptide substrates are numbered according to the system of Schechter and Berger (1)). The effect of the kind of amino acid residue at the P2-position was further determined using Z-X-Lys-OMe (X = glycine, alanine, leucine, or phenylalanine) as esterase substrates. Alanine was the most efficient residue as X with subtilisins and Streptomyces fradiae Ib enzyme, while leucine or phenylalanine were most efficient with the enzymes from Streptomyces fradiae II, Aspergillus sojae, and Aspergillus melleus. All the serine alkaline proteinases tested in this study were sensitive to Z-Ala-Gly-PheCH2Cl, the dependence of inhibition on the inhibitor concentration differed among the enzymes.  相似文献   

5.
栀子兰色素可能为栀子粉末外用抗炎消肿时的活性物质   总被引:10,自引:0,他引:10  
传统中药山栀子中的环烯醚萜成分及尼平(genipin)与甘氨酸反应可形成兰色素,初步药理实验显示,该兰色色素对小鼠具有抗炎和镇痛作用,推测栀子兰色素可能为民间将栀子粉末外用抗炎消肿时的活性物质。  相似文献   

6.
An in vitro technique was used to examine the absorption by the gill of Mya arenaria (L.) of six neutral l-amino acids chosen for differences in their side chains, viz., short chain — glycine and alanine, long chain — leucine, sulphur containing — methionine, aromatic — phenylalanine, hydroxylic — serine. The uptake of all these substrates was active and carrier-mediated, and was analysed by Michaelis-Menten kinetics. Values of Kt, the transport constant, decreased with increasing length of the side chain for glycine, l-serine, l-alanine, l-methionine, l-phenylalanine, and l-leucine, while values for Vmax, the maximum velocity of uptake, decreased as chain length increased, except in the case of l-serine. Inhibition experiments suggested that at least one transport locus was common to all the neutral amino acids examined, but homogeneity of transport was only demonstrated in the case of methionine and leucine. The transport of the basic amino acid l-lysine overlapped with several of the-neutral amino acids. These results emphasize the need to consider the mutual inhibitory effects between amino acids absorbed from sea water, when calculations are made of the value of this source of nutrition to marine invertebrates.  相似文献   

7.
Hydrolysis and absorption of glycylglycine and glycyl-L-leucine as well as absorption of glycine and leucine were studied in chronic experiments on rats with their isolated small intestine loop. Values of the “true” kinetic constants (with taking into account effect of the preepithelial layer) were determined to be as follows: (1) K t = 46.7 ± 4.0 and 2.15 ± 0.59 mM, J max = 0.74 ± 0.15 and 0.16 ± 0.03 μmol min?1 cm?1 (for transport of free glycine and leucine, respectively); (2) K t = 4.4 ± 0.6 and 4.8 ± 0.9 mM, J max = 0.24 ± 0.02 and 0.23 ± 0.02 μmol min?1 cm?1 (for transport of glycylglycine and glycyl-L-leucine, respectively); (3) K M = 5.4 ± 1.0 and 38.2 ± 4.4 mM, V max = 0.09 ± 0.02 and 0.24 ± 0.07 μmol min?1 cm?1 (for membrane hydrolysis of these dipeptides, respectively). According to our calculations, in the wide range of the initial glycylglycine concentrations (2.5–40 mM) a part of the peptide component in its total absorption accounts for 0.77–0.80. In the case of glycyl-L-leucine a part of the peptide component in the total glycine absorption decreases from 0.89 to 0.84, while in the total leucine absorption—from 0.86 to 0.71, the initial dipeptide concentration rising from 5 to 40 mM. The obtained results show that the peptide component prevails in absorption of the studied dipeptides in the rat small intestine, but its role is much lesser than what many authors believe. In the case of glycyl-L-leucine, the peptide component can achieve saturation in the range of high substrate concentrations, its part decreasing essentially to become compared with absorption of free amino acids formed as a result of the dipeptide membrane hydrolysis.  相似文献   

8.
Candida albicans cells grown on alkanes of different chain lengths (C13, C14, C15, C16, C17, and C18) exhibited a low growth rate and gradual increase in the total lipid content with the increase in the length of alkanes. There was a significant change in the phospholipids and sterols content of various alkane-grown cells compared to glucose-grown cells. In glucose-grown cells, the transport of various amino acids, e.g., proline, glutamic acid, lysine, glycine, phenylalanine, serine, methionine, and leucine was found to be energy dependent and against a concentration gradient. In alkane-grown cells, the transport of lysine, proline, serine, and methionine was reduced, however, there was no effect on the uptake of glycine, glutamic acid, phenylalanine, and leucine. The results were interpreted as different carrier(s) responsible for amino acid uptake responsed differently to the change of lipid environment.  相似文献   

9.
The uptake kinetics of leucine and the assimilation and respiration of leucine, glycine, glutamate and arginine by a marinePseudomonas sp. was evaluated to determine whether the uptake and efficiency of substrate utilization of free-living bacteria differed from that of bacteria associated with surfaces. Bacteria were allowed to attach to plastic substrata with known hydrophilicities, as measured by advancing water contact angle (θ A); these were Thermanox, poly(vinylidene fluoride), poly(ethelene) and poly(tetrafluoroethylene). The assimilation and respiration of surface-associated bacteria depended on the amino acid and substratumθ A, but assimilation by surface-associated cells was generally greater than and respiration was generally less than that by free-living bacteria. The uptake kinetics with leucine demonstrated that the half saturation constant (K) of surface-associated bacteria was greater than that for free-living cells. The Vmax values for surface-associated and free-living bacteria were similar, except for cells associated with poly(tetrafluoroethylene), which had a higher Vmax value.  相似文献   

10.
Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467–500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts.  相似文献   

11.
The formation of soluble Monascus red pigments is strongly positively and negatively regulated by different amino acids. Leucine, valine, lysine, and methionine had strong negative effects on pigment formation. Leucine supported poor pigment formation when used as sole nitrogen source in fermentations, yet it neither repressed pigment synthase(s) nor inhibited its action. The new pigments derived from the hydrophobic leucine were more hydrophilic than the conventional red pigments (lacking an amino acid side-chain) and were extracellularly produced. Therefore, the low level of red pigments produced when leucine was the nitrogen source was not due to feed-back regulation by cell-bound leucine pigments. The negative effect of leucine was caused by enhanced decay of pigment synthase(s). The enhanced decay was not due simply to de novo synthesis of a leucine-induced protease.Abbreviations mSG Monosodium glutamate - MOPS 3-(N-morpholine)propane sulfonic acid - DCW dry cell weight  相似文献   

12.
The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λ max = 453 nm) and violet receptors (λ max = 425 nm), respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species.  相似文献   

13.
The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Through sequence analysis and functional investigation of vertebrate visual pigments, numerous amino acid substitutions important for this adaptive process have been identified. Here we describe a serine/alanine (S/A) substitution in long wavelength-absorbing Drosophila visual pigments that occurs at a site corresponding to Ala-292 in bovine rhodopsin. This S/A substitution accounts for a 10–17-nm absorption shift in visual pigments of this class. Additionally, we demonstrate that substitution of a cysteine at the same site, as occurs in the blue-absorbing Rh5 pigment, accounts for a 4-nm shift. Substitutions at this site are the first spectrally significant amino acid changes to be identified for invertebrate pigments sensitive to visible light and are the first evidence of a conserved tuning mechanism in vertebrate and invertebrate pigments of this class.Organisms use color vision for survival behaviors such as foraging, mating, and predator avoidance (13). Color vision in invertebrates ranges from trichromatic systems capable of detecting UV, blue, and green (e.g. bees and flies) to the highly complex mantis shrimps (stomatopods) having 12 spectrally distinct classes of photoreceptor cells (4). Despite the diversity of invertebrate color vision systems and the large collection of naturally occurring visual pigments, important questions remain concerning the molecular mechanisms that regulate color sensitivity.In both vertebrates and invertebrates, the visual pigment rhodopsin consists of a chromophore (e.g. 11-cis retinal) covalently bound to an opsin apoprotein via a protonated Schiff base. Upon light absorption, the chromophore isomerizes from cis to all-trans, inducing conformational changes in the opsin that produce activated metarhodopsin. Specific interactions between the retinal chromophore and residues in the opsin tune the λmax of the chromophore. Studies have shown that Glu-113 (bovine position) serves as the retinylidene Schiff base counter-ion in vertebrate visual pigments (57). Removing the negative charge of the counter-ion from the binding pocket deprotonates the chromophore and yields a UV-absorbing pigment (57). Using sequence alignments, phylogenetic analysis, analysis of the bovine rhodopsin crystal structure (PDB2 entry 1U19), and functional experiments, a large number of amino acids involved in the spectral tuning of vertebrate visual pigments have been identified (8).In contrast, the counter-ion for invertebrate rhodopsin remains unknown, and only one spectrally relevant residue has been identified: an amino acid substitution in Drosophila pigments responsible for UV versus visible sensitivity (9). Interestingly, this amino acid substitution (Gly-90 in bovine rhodopsin) coincides with a substitution that mediates UV versus blue sensitivity in several bird species (10, 11). This discovery highlights the value of a cross-phyla comparison of visual pigments as a means to identify structural differences that may regulate color vision in invertebrates.In the present study, we identify an amino acid substitution in Drosophila visual pigments that regulates the color sensitivity of blue- and green-absorbing rhodopsins. For these studies, we employed sequence analysis of invertebrate and vertebrate visual pigments and a functional examination of mutant invertebrate opsins. This amino acid substitution red-shifts the λmax of the Drosophila Rh1 pigment and reciprocally blue-shifts the λmax of Rh6 pigment. Interestingly, this site also affects the spectral tuning of vertebrate pigments and corresponds to Ala-292 in bovine rhodopsin (8, 1216).  相似文献   

14.
Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(acyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-β-glucopyranoside]-7-O-cellobioside-4′-O-glucopyranoside as the main flavonol pigment.On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H2O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] + at 2102 m/z (C93H105O55 calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.  相似文献   

15.
1. Two mutant strains of Rhodopseudomonas spheroides, which are blocked in the synthesis of bacteriochlorophyll, accumulate pigments. These have been tentatively identified as magnesium 2,4-divinylphaeoporphyrin a5 monomethyl ester and the magnesium derivative of 2-devinyl-2-hydroxyethyl-phaeophorbid a, formed by mutant 2/73 and 2/21 respectively. 2. Maximum extracellular production of these pigments occurs when suspensions of the organisms are incubated with low aeration in a growth medium containing iron and supplemented with glycine, succinate, methionine and Tween 80. 3. Concomitant protein synthesis is required for pigment production by the mutants from glycine and succinate but this requirement is less marked when δ-aminolaevulic acid is the substrate. 4. In the absence of Tween 80, a considerable proportion of the total pigment is retained within the cells and appears in the particulate fraction of cell-free extracts. 5. Suspensions of the parent strain containing δ-aminolaevulic acid can be made to accumulate extracellular pigments which are tentatively identified as magnesium protoporphyrin monomethyl ester and the magnesium derivative of 2-devinyl-2-hydroxyethyl-phaeophorbid a. 6. Maximum production occurs with cells incubated photosynthetically after a period of oxygen repression of bacteriochlorophyll synthesis. Formation of the phaeophorbid derivative is enhanced by 8-azaguanine or 5-fluorouracil, or by adenine deficiency in a nutritional mutant; Tween 80 is also needed and iron is essential. 7. Synthesis of bacteriochlorophyll might possibly involve the participation of lipoprotein-bound intermediates, which may be formed at the initial stage of condensation between glycine and succinyl-CoA to give δ-aminolaevulic acid.  相似文献   

16.
Amino acid synthesis from glucose-U-14C was investigated in 2 day post-emergent and pregnant females of Glossina morsitans. This insect can synthesize alanine, aspartic acid, cystine, glutamic acid, glycine, proline, and serine from glucose. Arginine, histidine, hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, taurine, threonine, and valine showed no radioactivity and hence may be classified as nutritionally indispensable amino acids. Although tyrosine and hydroxyproline were not synthesized from glucose, they are at least partially dispensable nutrients for this insect because their synthesis from phenylalanine has been demonstrated. After the labelled glucose injection the highest radioactivity was recovered in the proline fraction. This is probably related to its rôle as an important energy reserve for flight. The radioactive amino acids recovered from females and from their offspring following glucose-U-14C injection were similar to those recovered from younger females. Radioactivity was also detected in the expired CO2 and the excreta. The amino acids alanine, arginine, cystine, glycine, histidine, leucine/isoleucine, lysine, methionine, proline, and valine were identified in the excreta, of which arginine and histidine were in the largest amounts. Only excreted alanine, glycine, and proline showed radioactivity.  相似文献   

17.
Bacillus subtilis no. 24 was used as a microorganism which hydrolyzes geniposide and forms a blue pigment. This microorganism possessed β-glucosidase activity during aerobic growth (log phase) and assimilated geniposide as a carbon source. The growth of this cell was depressed by genipin formed by the hydrolysis of geniposide. Blue pigment was formed continuously for 20 d in medium containing geniposide, yeast extract and Polypepton, using growing cells immobilized in calcium-alginate gel.  相似文献   

18.
The capacity for cone‐mediated color vision varies among nocturnal primates. Some species are colorblind, having lost the functionality of their short‐wavelength‐sensitive‐1 (SWS1) opsin pigment gene. In other species, such as the aye‐aye (Daubentonia madagascariensis), the SWS1 gene remains intact. Recent studies focused on aye‐ayes indicate that this gene has been maintained by natural selection and that the pigment has a peak sensitivity (λmax) of 406 nm, which is ~20 nm closer to the ultraviolet region of the spectrum than in most primates. The functional significance behind the retention and unusual λmax of this opsin pigment is unknown, and it is perplexing given that all mammals are presumed to be colorblind in the dark. Here we comment on this puzzle and discuss recent findings on the color vision intensity thresholds of terrestrial vertebrates with comparable optics to aye‐ayes. We draw attention to the twilight activities of aye‐ayes and report that twilight is enriched in short‐wavelength (bluish) light. We also show that the intensity of twilight and full moonlight is probably sufficient to support cone‐mediated color vision. We speculate that the intact SWS1 opsin pigment gene of aye‐ayes is a crepuscular adaptation and we report on the blueness of potential visual targets, such as scent marks and the brilliant blue arils of Ravenala madagascariensis.  相似文献   

19.
In this study, a precise and reliable ultra-high performance liquid chromatography (UHPLC) method for the simultaneous determination of non-canonical (norvaline and norleucine) and standard amino acids (aspartic acid, glutamic acid, serine, histidine, glycine, threonine, arginine, tyrosine, methionine, valine, phenylalanine, isoleucine, leucine) in biopharmaceutical-related fermentation processes was established. After pre-column derivatization with ortho-phthaldialdehyde and 2-mercaptoethanol, the derivatives were separated on a sub-2 μm particle C18 reverse-phase column. Identification and quantification of amino acids were carried out by fluorescence detection. To test method feasibility on standard HPLC instruments, the assay was properly transferred to a core–shell particle C18 reverse-phase column. The limits of detection showed excellent sensitivity by values from 0.06 to 0.17 pmol per injection and limits of quantification between 0.19 and 0.89 pmol. In the present study, the newly established UHPLC method was applied to a recombinant antibody Escherichia coli fermentation process for the analysis of total free amino acids. We were able to specifically detect and quantify the unfavorable amino acids in such complex samples. Since we observed trace amounts of norvaline and norleucine during all fermentation phases, an obligatory process monitoring should be considered to improve quality of recombinant protein drugs in future.  相似文献   

20.
We used a recombinant, permeabilized E. coli Nissle strain harbouring the plu3263 gene cluster from Photorhabdus luminescens for the synthesis of luminmide type cyclic pentapeptides belonging to the class of nonribosomally biosynthesized peptides (NRP). Cells could be fully permeabilized using 1 % v/v toluene. Synthesis of luminmides was increased fivefold when 0.3 mM EDTA was added to the substrate mixture acting as an inhibitor of metal proteases. Luminmide formation was studied applying different amino acid concentrations. Apparent kinetic parameters for the synthesis of the main product luminmide A from leucine, phenylalanine and valine were calculated from the collected data. K s app values ranged from 0.17 mM for leucine to 0.57 mM for phenylalanine, and r max app was about 3 × 10?8 mmol min?1(g CDW)?1). By removing phenylalanine from the substrate mixture, the formation of luminmide A was reduced tenfold while luminmide B was increased from 50 to 500 μg/l becoming the main product. Two new luminmides were synthesized in this study. Luminmide H incorporates tryptophan replacing phenylalanine in luminmide A. In luminmide I, leucine was replaced with 4,5-dehydro-leucine, a non-proteinogenic amino acid fed to the incubation mixture. Our study shows new opportunities for increasing the spectrum of luminmide variants produced, for improving production selectivity and for kinetic in vitro studies of the megasynthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号