首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms within the IV and I VSDs, respectively.  相似文献   

2.
In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling.  相似文献   

3.
G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.  相似文献   

4.
The L-type Ca2+ channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α1s or CaV1.1, α2, β1a, δ1, and γ), we created transgenic mice expressing a recombinant β1a subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α2-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of CaV1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α1s subunit to the membrane and its suggested role in excitation-contraction coupling.  相似文献   

5.
CaV1.1e is the voltage-gated calcium channel splice variant of embryonic skeletal muscle. It differs from the adult CaV1.1a splice variant by the exclusion of exon 29 coding for 19 amino acids in the extracellular loop connecting transmembrane domains IVS3 and IVS4. Like the adult splice variant CaV1.1a, the embryonic CaV1.1e variant functions as voltage sensor in excitation-contraction coupling, but unlike CaV1.1a it also conducts sizable calcium currents. Consequently, physiological or pharmacological modulation of calcium currents may have a greater impact in CaV1.1e expressing muscle cells. Here, we analyzed the effects of L-type current modulators on whole-cell current properties in dysgenic (CaV1.1-null) myotubes reconstituted with either CaV1.1a or CaV1.1e. Furthermore, we examined the physiological current modulation by interactions with the ryanodine receptor using a chimeric CaV1.1e construct in which the cytoplasmic II-III loop, essential for skeletal muscle excitation-contraction coupling, has been replaced with the corresponding but nonfunctional loop from the Musca channel. Whereas the equivalent substitution in CaV1.1a had abolished the calcium currents, substitution of the II-III loop in CaV1.1e did not significantly reduce current amplitudes. This indicates that CaV1.1e is not subject to retrograde coupling with the ryanodine receptor and that the retrograde coupling mechanism in CaV1.1a operates by counteracting the limiting effects of exon 29 inclusion on the current amplitude. Pharmacologically, CaV1.1e behaves like other L-type calcium channels. Its currents are substantially increased by the calcium channel agonist Bay K 8644 and inhibited by the calcium channel blocker nifedipine in a dose-dependent manner. With an IC50 of 0.37 μM for current inhibition by nifedipine, CaV1.1e is a potential drug target for the treatment of myotonic dystrophy. It might block the excessive calcium influx resulting from the aberrant expression of the embryonic splice variant CaV1.1e in the skeletal muscles of myotonic dystrophy patients.  相似文献   

6.
Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.  相似文献   

7.
L-type Ca2+ channels play a critical role in cardiac rhythmicity. These ion channels are oligomeric complexes formed by the pore-forming CaVα1 with the auxiliary CaVβ and CaVα2δ subunits. CaVα2δ increases the peak current density and improves the voltage-dependent activation gating of CaV1.2 channels without increasing the surface expression of the CaVα1 subunit. The functional impact of genetic variants of CACNA2D1 (the gene encoding for CaVα2δ), associated with shorter repolarization QT intervals (the time interval between the Q and the T waves on the cardiac electrocardiogram), was investigated after recombinant expression of the full complement of L-type CaV1.2 subunits in human embryonic kidney 293 cells. By performing side-by-side high resolution flow cytometry assays and whole-cell patch clamp recordings, we revealed that the surface density of the CaVα2δ wild-type protein correlates with the peak current density. Furthermore, the cell surface density of CaVα2δ mutants S755T, Q917H, and S956T was not significantly different from the cell surface density of the CaVα2δ wild-type protein expressed under the same conditions. In contrast, the cell surface expression of CaVα2δ D550Y, CaVα2δ S709N, and the double mutant D550Y/Q917H was reduced, respectively, by ≈30–33% for the single mutants and by 60% for the latter. The cell surface density of D550Y/Q917H was more significantly impaired than protein stability, suggesting that surface trafficking of CaVα2δ was disrupted by the double mutation. Co-expression with D550Y/Q917H significantly decreased CaV1.2 currents as compared with results obtained with CaVα2δ wild type. It is concluded that D550Y/Q917H reduced inward Ca2+ currents through a defect in the cell surface trafficking of CaVα2δ. Altogether, our results provide novel insight in the molecular mechanism underlying the modulation of CaV1.2 currents by CaVα2δ.  相似文献   

8.
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels.  相似文献   

9.
Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane.  相似文献   

10.
The accessory beta subunit (Cavβ) of calcium channels first appear in the same genome as Cav1 L-type calcium channels in single-celled coanoflagellates. The complexity of this relationship expanded in vertebrates to include four different possible Cavβ subunits (β1, β2, β3, β4) which associate with four Cav1 channel isoforms (Cav1.1 to Cav1.4) and three Cav2 channel isoforms (Cav2.1 to Cav2.3). Here we assess the fundamentally-shared features of the Cavβ subunit in an invertebrate model (pond snail Lymnaea stagnalis) that bears only three homologous genes: (LCav1, LCav2, and LCavβ). Invertebrate Cavβ subunits (in flatworms, snails, squid and honeybees) slow the inactivation kinetics of Cav2 channels, and they do so with variable N-termini and lacking the canonical palmitoylation residues of the vertebrate β2a subunit. Alternative splicing of exon 7 of the HOOK domain is a primary determinant of a slow inactivation kinetics imparted by the invertebrate LCavβ subunit. LCavβ will also slow the inactivation kinetics of LCav3 T-type channels, but this is likely not physiologically relevant in vivo. Variable N-termini have little influence on the voltage-dependent inactivation kinetics of differing invertebrate Cavβ subunits, but the expression pattern of N-terminal splice isoforms appears to be highly tissue specific. Molluscan LCavβ subunits have an N-terminal “A” isoform (coded by exons: 1a and 1b) that structurally resembles the muscle specific variant of vertebrate β1a subunit, and has a broad mRNA expression profile in brain, heart, muscle and glands. A more variable “B” N-terminus (exon 2) in the exon position of mammalian β3 and has a more brain-centric mRNA expression pattern. Lastly, we suggest that the facilitation of closed-state inactivation (e.g. observed in Cav2.2 and Cavβ3 subunit combinations) is a specialization in vertebrates, because neither snail subunit (LCav2 nor LCavβ) appears to be compatible with this observed property.  相似文献   

11.
In superior cervical ganglion (SCG) neurons, stimulation of M1 receptors (M1Rs) produces a distinct pattern of modulation of N-type calcium (N-) channel activity, enhancing currents elicited with negative test potentials and inhibiting currents elicited with positive test potentials. Exogenously applied arachidonic acid (AA) reproduces this profile of modulation, suggesting AA functions as a downstream messenger of M1Rs. In addition, techniques that diminish AA''s concentration during M1R stimulation minimize N-current modulation. However, other studies suggest depletion of phosphatidylinositol-4,5-bisphosphate during M1R stimulation suffices to elicit modulation. In this study, we used an expression system to examine the physiological mechanisms regulating modulation. We found the β subunit (CaVβ) acts as a molecular switch regulating whether modulation results in enhancement or inhibition. In human embryonic kidney 293 cells, stimulation of M1Rs or neurokinin-1 receptors (NK-1Rs) inhibited activity of N channels formed by CaV2.2 and coexpressed with CaVβ1b, CaVβ3, or CaVβ4 but enhanced activity of N channels containing CaVβ2a. Exogenously applied AA produced the same pattern of modulation. Coexpression of CaVβ2a, CaVβ3, and CaVβ4 recapitulated the modulatory response previously seen in SCG neurons, implying heterogeneous association of CaVβ with CaV2.2. Further experiments with mutated, chimeric CaVβ subunits and free palmitic acid revealed that palmitoylation of CaVβ2a is essential for loss of inhibition. The data presented here fit a model in which CaVβ2a blocks inhibition, thus unmasking enhancement. Our discovery that the presence or absence of palmitoylated CaVβ2a toggles M1R- or NK-1R–mediated modulation of N current between enhancement and inhibition identifies a novel role for palmitoylation. Moreover, these findings predict that at synapses, modulation of N-channel activity by M1Rs or NK-1Rs will fluctuate between enhancement and inhibition based on the presence of palmitoylated CaVβ2a.  相似文献   

12.
The Ca2+ channel α1S subunit (CaV1.1) is the voltage sensor in skeletal muscle excitation-contraction (EC) coupling. Upon membrane depolarization, this sensor rapidly triggers Ca2+ release from internal stores and conducts a slowly activating Ca2+ current. However, this Ca2+ current is not essential for skeletal muscle EC coupling. Here, we identified a CaV1.1 splice variant with greatly distinct current properties. The variant of the CACNA1S gene lacking exon 29 was expressed at low levels in differentiated human and mouse muscle, and up to 80% in myotubes. To test its biophysical properties, we deleted exon 29 in a green fluorescent protein (GFP)-tagged α1S subunit and expressed it in dysgenic (α1S-null) myotubes. GFP-α1SΔ29 was correctly targeted into triads and supported skeletal muscle EC coupling. However, the Ca2+ currents through GFP-α1SΔ29 showed a 30-mV left-shifted voltage dependence of activation and a substantially increased open probability, giving rise to an eightfold increased current density. This robust Ca2+ influx contributed substantially to the depolarization-induced Ca2+ transient that triggers contraction. Moreover, deletion of exon 29 accelerated current kinetics independent of the auxiliary α2δ-1 subunit. Thus, characterizing the CaV1.1Δ29 splice variant revealed the structural bases underlying the specific gating properties of skeletal muscle Ca2+ channels, and it suggests the existence of a distinct mode of EC coupling in developing muscle.  相似文献   

13.
High voltage-activated Ca2+ (CaV) channels are protein complexes containing pore-forming α1 and auxiliary β and α2δ subunits. The subcellular localization and membrane interactions of the β subunits play a crucial role in regulating CaV channel inactivation and its lipid sensitivity. Here, we investigated the effects of membrane phosphoinositide (PI) turnover on CaV2.2 channel function. The β2 isoform β2e associates with the membrane through electrostatic and hydrophobic interactions. Using chimeric β subunits and liposome-binding assays, we determined that interaction between the N-terminal 23 amino acids of β2e and anionic phospholipids was sufficient for β2e membrane targeting. Binding of the β2e subunit N terminus to liposomes was significantly increased by inclusion of 1% phosphatidylinositol 4,5-bisphosphate (PIP2) in the liposomes, suggesting that, in addition to phosphatidylserine, PIs are responsible for β2e targeting to the plasma membrane. Membrane binding of the β2e subunit slowed CaV2.2 current inactivation. When membrane phosphatidylinositol 4-phosphate and PIP2 were depleted by rapamycin-induced translocation of pseudojanin to the membrane, however, channel opening was decreased and fast inactivation of CaV2.2(β2e) currents was enhanced. Activation of the M1 muscarinic receptor elicited transient and reversible translocation of β2e subunits from membrane to cytosol, but not that of β2a or β3, resulting in fast inactivation of CaV2.2 channels with β2e. These results suggest that membrane targeting of the β2e subunit, which is mediated by nonspecific electrostatic insertion, is dynamically regulated by receptor stimulation, and that the reversible association of β2e with membrane PIs results in functional changes in CaV channel gating. The phospholipid–protein interaction observed here provides structural insight into mechanisms of membrane–protein association and the role of phospholipids in ion channel regulation.  相似文献   

14.
Loss of neuronal protein stargazin (γ2) is associated with recurrent epileptic seizures and ataxia in mice. Initially, due to homology to the skeletal muscle calcium channel γ1 subunit, stargazin and other family members (γ3–8) were classified as γ subunits of neuronal voltage-gated calcium channels (such as CaV2.1-CaV2.3). Here, we report that stargazin interferes with G protein modulation of CaV2.2 (N-type) channels expressed in Xenopus oocytes. Stargazin counteracted the Gβγ-induced inhibition of CaV2.2 channel currents, caused either by coexpression of the Gβγ dimer or by activation of a G protein-coupled receptor. Expression of high doses of Gβγ overcame the effects of stargazin. High affinity Gβγ scavenger proteins m-cβARK and m-phosducin produced effects similar to stargazin. The effects of stargazin and m-cβARK were not additive, suggesting a common mechanism of action, and generally independent of the presence of the CaVβ3 subunit. However, in some cases, coexpression of CaVβ3 blunted the modulation by stargazin. Finally, the Gβγ-opposing action of stargazin was not unique to CaV2.2, as stargazin also inhibited the Gβγ-mediated activation of the G protein-activated K+ channel. Purified cytosolic C-terminal part of stargazin bound Gβγ in vitro. Our results suggest that the regulation by stargazin of biophysical properties of CaV2.2 are not exerted by direct modulation of the channel but via a Gβγ-dependent mechanism.  相似文献   

15.
CaVβ subunits modulate cell surface expression and voltage-dependent gating of high voltage-activated (HVA) CaV1 and CaV2 α1 subunits. High affinity CaVβ binding onto the so-called α interaction domain of the I-II linker of the CaVα1 subunit is required for CaVβ modulation of HVA channel gating. It has been suggested, however, that CaVβ-mediated plasma membrane targeting could be uncoupled from CaVβ-mediated modulation of channel gating. In addition to CaVβ, CaVα2δ and calmodulin have been proposed to play important roles in HVA channel targeting. Indeed we show that co-expression of CaVα2δ caused a 5-fold stimulation of the whole cell currents measured with CaV1.2 and CaVβ3. To gauge the synergetic role of auxiliary subunits in the steady-state plasma membrane expression of CaV1.2, extracellularly tagged CaV1.2 proteins were quantified using fluorescence-activated cell sorting analysis. Co-expression of CaV1.2 with either CaVα2δ, calmodulin wild type, or apocalmodulin (alone or in combination) failed to promote the detection of fluorescently labeled CaV1.2 subunits. In contrast, co-expression with CaVβ3 stimulated plasma membrane expression of CaV1.2 by a 10-fold factor. Mutations within the α interaction domain of CaV1.2 or within the nucleotide kinase domain of CaVβ3 disrupted the CaVβ3-induced plasma membrane targeting of CaV1.2. Altogether, these data support a model where high affinity binding of CaVβ to the I-II linker of CaVα1 largely accounts for CaVβ-induced plasma membrane targeting of CaV1.2.  相似文献   

16.
The assembly of high voltage-activated Ca2+ channels with different β subunits influences channel properties and possibly subcellular targeting. We studied β subunit expression in the somata and axon terminals of the magnocellular neurosecretory cells, which are located in the supraoptic nucleus (SON) and neurohypophysis, respectively. Antibodies directed against the 4 CaVβ subunits (CaVβ1-CaVβ4) were used for immunoblots and for immunostaining of slices of these two tissues. We found that all 4 β subunits are expressed in both locations, but that CaVβ2 had the highest relative expression in the neurohypophysis. These data suggest that the CaVβ2 subunit is selectively targeted to axon terminals and may play a role in targeting and/or regulating the properties of Ca2+ channels.  相似文献   

17.
The auxiliary CaVα2δ-1 subunit is an important component of voltage-gated Ca2+ (CaV) channel complexes in many tissues and of great interest as a drug target. Nevertheless, its exact role in specific cell functions is still unknown. This is particularly important in the case of the neuronal L-type CaV channels where these proteins play a key role in the secretion of neurotransmitters and hormones, gene expression, and the activation of other ion channels. Therefore, using a combined approach of patch-clamp recordings and molecular biology, we studied the role of the CaVα2δ-1 subunit on the functional expression and the pharmacology of recombinant L-type CaV1.3 channels in HEK-293 cells. Co-expression of CaVα2δ-1 significantly increased macroscopic currents and conferred the CaV1.3α1/CaVβ3 channels sensitivity to the antiepileptic/analgesic drugs gabapentin and AdGABA. In contrast, CaVα2δ-1 subunits harboring point mutations in N-glycosylation consensus sequences or the proteolytic site as well as in conserved cysteines in the transmembrane δ domain of the protein, reduced functionality in terms of enhancement of CaV1.3α1/CaVβ3 currents. In addition, co-expression of the δ domain drastically inhibited macroscopic currents through recombinant CaV1.3 channels possibly by affecting channel synthesis. Together these results provide several lines of evidence that the CaVα2δ-1 auxiliary subunit may interact with CaV1.3 channels and regulate their functional expression.  相似文献   

18.
CaVβ subunits are formed by a Src homology 3 domain and a guanylate kinase-like (GK) domain connected through a variable HOOK domain. Complete deletion of the Src homology 3 domain (75 residues) as well as deletion of the HOOK domain (47 residues) did not alter plasma membrane density of CaV2.3 nor its typical activation gating. In contrast, six-residue deletions in the GK domain disrupted cell surface trafficking and functional expression of CaV2.3. Mutations of residues known to carry nanomolar affinity binding in the GK domain of CaVβ (P175A, P179A, M195A, M196A, K198A, S295A, R302G, R307A, E339G, N340G, and A345G) did not significantly alter cell surface targeting or gating modulation of CaV2.3. Nonetheless, mutations of a quartet of leucine residues (either single or multiple mutants) in the α3, α6, β10, and α9 regions of the GK domain were found to significantly impair cell surface density of CaV2.3 channels. Furthermore, the normalized protein density of CaV2.3 was nearly abolished with the quadruple CaVβ3 Leu mutant L200G/L303G/L337G/L342G. Altogether, our observations suggest that the four leucine residues in CaVβ3 form a hydrophobic pocket surrounding key residues in the α-interacting domain of CaV2.3. This interaction appears to play an essential role in conferring CaVβ-induced modulation of the protein density of CaVα1 subunits in CaV2 channels.  相似文献   

19.
Mutations in the CACNA1A gene, which encodes the pore-forming α1A subunit of the CaV2.1 voltage-gated calcium channel, cause a number of human neurologic diseases including familial hemiplegic migraine. We have analyzed the functional impact of the E1015K amino acid substitution located in the “synprint” domain of the α1A subunit. This variant was identified in two families with hemiplegic migraine and in one patient with migraine with aura. The wild type (WT) and the E1015K forms of the GFP-tagged α1A subunit were expressed in cultured hippocampal neurons and HEK cells to understand the role of the variant in the transport activity and physiology of CaV2.1. The E1015K variant does not alter CaV2.1 protein expression, and its transport to the cell surface and synaptic terminals is similar to that observed for WT channels. Electrophysiological data demonstrated that E1015K channels have increased current density and significantly altered inactivation properties compared with WT. Furthermore, the SNARE proteins syntaxin 1A and SNAP-25 were unable to modulate voltage-dependent inactivation of E1015K channels. Overall, our findings describe a genetic variant in the synprint site of the CaV2.1 channel which is characterized by a gain-of-function and associated with both hemiplegic migraine and migraine with aura in patients.  相似文献   

20.

Background

The Cavβ subunits of high voltage-activated Ca2+ channels control the trafficking and biophysical properties of the α1 subunit. The Cavβ-α1 interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that βs regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the α-interaction domain (AID) be a rigid structure.

Methodology/Principal Findings

The present study tests this hypothesis by altering the flexibility and orientation of this region in α12.2, then testing for Cavβ regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6). This mutation abolished β2a and β3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of β2a to produce non-inactivating currents. Orientation of Cavβ with respect to α12.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively). Again, the ability of Cavβ subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Cavβ subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms β-sheet. The orientation of β with respect to α was confirmed by the bimolecular fluorescence complementation assay.

Conclusions/Significance

These results show that the orientation of the Cavβ subunit relative to the α12.2 subunit is critical, and suggests additional points of contact between these subunits are required for Cavβ to regulate channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号