首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1 interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin β/α1,3,7 whereas hMSH2 specifically recognizes importin β/α3. Taken together, we infer that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity.  相似文献   

2.
Exonucleolytic degradation of DNA is an essential part of many DNA metabolic processes including DNA mismatch repair (MMR) and recombination. Human exonuclease I (hExoI) is a member of a family of conserved 5' --> 3' exonucleases, which are implicated in these processes by genetic studies. Here, we demonstrate that hExoI binds strongly to hMLH1, and we describe interaction regions between hExoI and the MMR proteins hMSH2, hMSH3, and hMLH1. In addition, hExoI forms an immunoprecipitable complex with hMLH1/hPMS2 in vivo. The study of interaction regions suggests a biochemical mechanism of the involvement of hExoI as a downstream effector in MMR and/or DNA recombination.  相似文献   

3.
Functional DNA mismatch repair (MMR) is essential for maintaining the fidelity of DNA replication and genetic stability. In hematopoiesis, loss of MMR results in methylating agent resistance and a hematopoietic stem cell (HSC) repopulation defect. Additionally MMR failure is associated with a variety of human malignancies, notably Lynch syndrome. We focus on the 5′  3′ exonuclease Exo1, the primary enzyme excising the nicked strand during MMR, preceding polymerase synthesis. We found that nuclease dead Exo1 mutant cells are sensitive to the O6-methylguanine alkylating agent temozolomide when given with the MGMT inactivator, O6benzylguanine (BG). Additionally we used an MMR reporter plasmid to verify that Exo1mut MEFs were able to repair G:T base mismatches in vitro. We showed that unlike other MMR deficient mouse models, Exo1mut mouse HSC did not gain a competitive survival advantage post temozolomide/BG treatment in vivo. To determine potential nucleases implicated in MMR in the absence of Exo1 nuclease activity, but in the presence of the inactive protein, we performed gene expression analyses of several mammalian nucleases in WT and Exo1mut MEFs before and after temozolomide treatment and identified upregulation of Artemis, Fan1, and Mre11. Partial shRNA mediated silencing of each of these in Exo1mut cells resulted in decreased MMR capacity and increased resistance to temozolomide/BG. We propose that nuclease function is required for fully functional MMR, but a portfolio of nucleases is able to compensate for loss of Exo1 nuclease activity to maintain proficiency.  相似文献   

4.
The DNA mismatch repair (MMR) factor Mlh1–Pms1 contains long intrinsically disordered regions (IDRs) whose exact functions remain elusive. We performed cross-linking mass spectrometry to identify interactions within Mlh1–Pms1 and used this information to insert FRB and FKBP dimerization domains into their IDRs. Baker''s yeast strains bearing these constructs were grown with rapamycin to induce dimerization. A strain containing FRB and FKBP domains in the Mlh1 IDR displayed a complete defect in MMR when grown with rapamycin. but removing rapamycin restored MMR functions. Strains in which FRB was inserted into the IDR of one MLH subunit and FKBP into the other subunit were also MMR defective. The MLH complex containing FRB and FKBP domains in the Mlh1 IDR displayed a rapamycin-dependent defect in Mlh1–Pms1 endonuclease activity. In contrast, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization inappropriately activated Mlh1–Pms1 endonuclease activity. We conclude that dynamic and coordinated rearrangements of the MLH IDRs both positively and negatively regulate how the MLH complex acts in MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.  相似文献   

5.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

6.
Human Ape2 protein has 3′ phosphodiesterase activity for processing 3′-damaged DNA termini, 3′–5′ exonuclease activity that supports removal of mismatched nucleotides from the 3′-end of DNA, and a somewhat weak AP-endonuclease activity. However, very little is known about the role of Ape2 in DNA repair processes. Here, we examine the effect of interaction of Ape2 with proliferating cell nuclear antigen (PCNA) on its enzymatic activities and on targeting Ape2 to oxidative DNA lesions. We show that PCNA strongly stimulates the 3′–5′ exonuclease and 3′ phosphodiesterase activities of Ape2, but has no effect on its AP-endonuclease activity. Moreover, we find that upon hydrogen-peroxide treatment Ape2 redistributes to nuclear foci where it colocalizes with PCNA. In concert with these results, we provide biochemical evidence that Ape2 can reduce the mutagenic consequences of attack by reactive oxygen species not only by repairing 3′-damaged termini but also by removing 3′-end adenine opposite from 8-oxoG. Based on these findings we suggest the involvement of Ape2 in repair of oxidative DNA damage and PCNA-dependent repair synthesis.  相似文献   

7.
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA–protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1–DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1–DNA complexes.  相似文献   

8.
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.Subject terms: Molecular biology  相似文献   

9.
Caspases are critical proapoptotic proteases that execute cell death signals by selectively cleaving proteins at Asp residues to alter their function. Caspases trigger apoptotic chromatin degradation by activating caspase-activated DNase and by inactivating a number of enzymes that sense or repair DNA damage. We have identified the mismatch repair protein MLH1 as a novel caspase-3 substrate by screening small pools of a human prostate adenocarcinoma cDNA library for cDNAs encoding caspase substrates. In this report, we demonstrate that human MLH1 is specifically cleaved by caspase-3 at Asp(418) in vitro. Furthermore, MLH1 is rapidly proteolyzed by caspase-3 in cancer cells induced to undergo apoptosis by treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the topoisomerase II inhibitor etoposide, which damages DNA. Importantly, proteolysis of MLH1 by caspase-3 triggers its partial redistribution from the nucleus to the cytoplasm and generates a proapoptotic carboxyl-terminal product. In addition, we demonstrate that a caspase-3 cleavage-resistant D418E MLH1 mutant inhibits etoposide-induced apoptosis but has little effect on TRAIL-induced apoptosis. These results indicate that the proteolysis of MLH1 by caspase-3 plays a functionally important and previously unrecognized role in the execution of DNA damage-induced apoptosis.  相似文献   

10.
Measurement of DNA mismatch repair activity in live cells   总被引:2,自引:1,他引:2       下载免费PDF全文
Loss of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Currently, assays for DNA MMR activity involve the use of cell extracts and are technically challenging and costly. Here, we report a rapid, less labor-intensive method that can quantitatively measure MMR activity in live cells. A G–G or T–G mismatch was introduced into the ATG start codon of the enhanced green fluorescent protein (EGFP) gene. Repair of the G–G or T–G mismatch to G–C or T–A, respectively, in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were transfected in parallel into the same cell line and the number of green cells counted by flow cytometry. Relative EGFP expression was calculated as the total fluorescence intensity of cells transfected with the heteroduplex construct divided by that of cells transfected with the homoduplex construct. We have tested several cell lines from both MMR-deficient and MMR-proficient groups using this method, including a colon carcinoma cell line HCT116 with defective hMLH1 gene and a derivative complemented by transient transfection with hMLH1 cDNA. Results show that MMR-proficient cells have significantly higher EGFP expression than MMR-deficient cells, and that transient expression of hMLH1 alone can elevate MMR activity in HCT116 cells. This method is potentially useful in comparing and monitoring MMR activity in live cells under various growth conditions.  相似文献   

11.
The 3′→5′ exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3′→5′ exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity.  相似文献   

12.
DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.  相似文献   

13.
Human exonuclease 1 (hExo1) plays important roles in DNA repair and recombination processes that maintain genomic integrity. It is a member of the 5' structure-specific nuclease family of exonucleases and endonucleases that includes FEN-1, XPG, and GEN1. We present structures of hExo1 in complex with a DNA substrate, followed by mutagenesis studies, and propose a common mechanism by which this nuclease family recognizes and processes diverse DNA structures. hExo1 induces a sharp bend in the DNA at nicks or gaps. Frayed 5' ends of nicked duplexes resemble flap junctions, unifying the mechanisms of endo- and exonucleolytic processing. Conformational control of a mobile region in the catalytic site suggests a mechanism for allosteric regulation by binding to protein partners. The relative arrangement of substrate binding sites in these enzymes provides an elegant solution to a complex geometrical puzzle of substrate recognition and processing.  相似文献   

14.
15.
The DNA mismatch repair (MMR) pathway contributes to the fidelity of DNA synthesis and recombination by correcting mispaired nucleotides and insertion/deletion loops (IDLs). We have investigated whether MMR protein expression, activity, and subcellular location are altered during discrete phases of the cell cycle in mammalian cells. Two distinct methods have been used to demonstrate that although physiological MMR protein expression, mismatch binding, and nick-directed MMR activity within the nucleus are at highest levels during S phase, MMR is active throughout the cell cycle. Despite equal MMR nuclear protein concentrations in S and G(2) phases, mismatch binding and repair activities within G(2) are significantly lower, indicating a post-translational decrease in MMR activity specific to G(2). We further demonstrate that typical co-localization of MutSalpha to late S phase replication foci can be disrupted by 2 microM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This concentration of MNNG does not decrease ongoing DNA synthesis nor induce cell cycle arrest until the second cell cycle, with long-term colony survival decreased by only 24%. These results suggest that low level alkylation damage can selectively disrupt MMR proofreading activity during DNA synthesis and potentially increase mutation frequency within surviving cells.  相似文献   

16.
Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1–PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.  相似文献   

17.
Yang H  Yung M  Sikavi C  Miller JH 《DNA Repair》2011,10(11):1121-1130
DNA mismatch repair (MMR) systems can be classified as either MutH-dependent or MutH-independent. In bacteria, extensive studies have been conducted with the MutH-dependent MMR in Escherichia coli and its close relatives. The picture of MutH-independent MMR in other bacteria is less clear, as MMR components other than MutS and MutL have not been identified in the majority of bacteria. Bacillus anthracis is one of the MutH-less Gram(+) bacteria in the phylum of Firmicutes. We used papillation as a tool to search for B. anthracis new mutator strains and identified a spontaneous mutator that carries a minitransposon insertion in the BAS4289 locus. The mutational frequency and specificity exhibited in this mutant were comparable to that of MMR-deficient strains with knockouts of mutL or mutS. It retained a similar UV sensitivity profile as that of the wild type. BAS4289 encodes a putative DNA helicase RecD2 that shares 30% sequence identity with Deinococcus radiodurans RecD2, a well characterized superfamily 1B helicase whose homologs are widely present in Firmicutes complete genomes. We demonstrated that the N-terminal region of RecD2, a unique sequence extension used to distinguish RecD2 from RecD1, was important for B. anthracis RecD2, as mutations in the N-terminal conserved motifs affected its DNA repair function. This is the first report of a RecD2 helicase being associated with MMR. RecD2 and our recently described YycJ protein are likely to be two additional components in the B. anthracis MutH-independent MMR system.  相似文献   

18.
Vascular endothelial zinc finger 1 (VEZF1) plays important roles in endothelial lineage definition and angiogenesis. Vasohibins 1 and 2 (VASH1 and VASH2) can form heterodimers with small vasohibin-binding protein (SVBP) and were recently shown to regulate angiogenesis by acting as tubulin detyrosinases. Here, we showed that VEZF1 binds directly with DNA guanine quadruplex (G quadruplex, G4) structures in vitro and in cells, which modulates the levels of the two isoforms of VASH1 mRNA. Disruption of this interaction, through genetic depletion of VEZF1 or treatment of cells with G4-stabilizing small molecules, led to increased production of the long over short isoform of VASH1 (i.e. VASH1A and VASH1B, respectively) mRNA and elevated tubulin detyrosinase activity in cells. Moreover, disruption of VEZF1-G4 interactions in human umbilical vein endothelial cells resulted in diminished angiogenesis. These results suggest that the interaction between VEZF1 and G4 structures assumes a crucial role in angiogenesis, which occurs through regulating the relative levels of the two isoforms of VASH1 mRNA and the detyrosinase activity of the VASH1-SVBP complex. Together, our work revealed VEZF1 as a G4-binding protein, identified a novel regulatory mechanism for tubulin detyrosinase, and illustrated that the VEZF1- and VASH1-mediated angiogenesis pathways are functionally connected.  相似文献   

19.
20.
As an effective programmable DNA targeting tool, CRISPR–Cas9 system has been adopted in varieties of biotechnological applications. However, the off-target effects, derived from the tolerance towards guide-target mismatches, are regarded as the major problems in engineering CRISPR systems. To understand this, we constructed two sgRNA libraries carrying saturated single- and double-nucleotide mismatches in living bacteria cells, and profiled the comprehensive landscape of in vivo binding affinity of dCas9 toward DNA target guided by each individual sgRNA with particular mismatches. We observed a synergistic effect in seed, where combinatorial double mutations caused more severe activity loss compared with the two corresponding single mutations. Moreover, we found that a particular mismatch type, dDrG (D = A, T, G), only showed moderate impairment on binding. To quantitatively understand the causal relationship between mismatch and binding behaviour of dCas9, we further established a biophysical model, and found that the thermodynamic properties of base-pairing coupled with strand invasion process, to a large extent, can account for the observed mismatch-activity landscape. Finally, we repurposed this model, together with a convolutional neural network constructed based on the same mechanism, as a predictive tool to guide the rational design of sgRNA in bacterial CRISPR interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号