首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kluyveromyces marxianus cells with inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity have been immobilized in open pore gelatin pellets with retention of > 90% of the original activity. The open pore gelatin pellets with entrapped yeast cells were obtained by selective leaching out of calcium alginate from the composite matrix, followed by crosslinking with glutaraldehyde. Enzymatic properties of the gelatin-entrapped cells were studied and compared with those of the free cells. The immobilization procedure did not alter the optimum pH of the enzymatic preparation; the optimum for both free and immobilized cells was pH 6.0. The optimum temperature of inulin hydrolysis was 10°C higher for immobilized cells. Activation energies for the reaction with the free and immobilized cells were calculated to be 6.35 and 2.26 kcal mol?1, respectively. Km values were 8 mM inulin for the free cells and 9.52 mM for the immobilized cells. The thermal stability of the enzyme was improved by immobilization. Free and immobilized cells showed fairly stable activities between pH 4 and 7, but free cell inulinase was more labile at pH values below 4 and above 7 compared to the immobilized form. There was no loss of enzyme activity of the immobilized cells on storage at 4°C for 30 days. Over the same period at room temperature only 6% of the original activity was lost.  相似文献   

2.
In this study, attempts were made to immobilize purified exo-inulinase from mutant thermophic Aspergillus tamarii-U4 onto Kaolinite clay by covalent bonding cross-linked with glutaraldehyde with an immobilization yield of 66% achieved. The free and immobilized inulinases were then characterized and characterization of the enzymes revealed that temperature and pH optima for the activity of the free and immobilized enzymes were both 65?°C and pH 4.5 respectively. The free inulinase completely lost its activity after incubation at 65?°C for 6 h while the immobilized inulinase retained 16.4% of its activity under the same condition of temperature and incubation time. The estimated kinetic parameters Km and Vmax for the free inulinase as estimated from Lineweaver-Burk plots were 0.39?mM and 4.21?µmol/min for the free inulinase and 0.37?mM and 4.01?µmol/min for the immobilized inulinase respectively. Inulin at 2.5% (w/v) and a flow rate of 0.1?mL was completely hydrolysed for 10?days at 60?°C in a continuous packed bed column and the operational stability of the system revealed that the half-life of the immobilized inulinase was 51?days. These properties make the immobilized exo-inulinase from Aspergillus tamarii-U4 a potential candidate for the production of fructose from inulin hydrolysis.  相似文献   

3.
Cellulase extracted from seeds of Cowpea (Vigna sinensis L var VITA-4) was partially purified and immobilized on brick dust as solid support via glutaraldehyde. The percentage retention of the enzyme activity on brick dust was nearly 85%. After immobilization specific activity of the enzyme increased from 0.275 to 0.557 U mg?1 protein with about 2 fold enrichment. The optimum pH and temperature of soluble enzyme were determined as pH 4.6 and WC, respectively whereas immobilized enzyme showed at pH 5.0 and 37°C, respectively. The Vmax values for soluble and immobilized enzyme were determined as 6.67 and 1.25 mg min?1, respectively whereas Km values were 4.35 and 4.76 mg ml?1, respectively. The immobilized enzyme displayed higher thermal stability than soluble enzyme and retained about 50% of its initial activity after 12 reuses. Immobilized enzyme was packed in an indigenously designed double walled glass bed reactor for continuous production of reducing sugars.  相似文献   

4.
A new source of lipase from Bacillus sp. ITP-001 was immobilized by physical adsorption on the polymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) in aqueous solution. The support and immobilized lipase were characterised, compared to the lyophilised lipase, with regard to the specific surface area, adsorption–desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption, differential scanning calorimetry, thermogravimetric analysis, chemical composition analysis, Fourier transform infrared spectroscopy and biochemical properties. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0, whereas the optimum pH for the free enzyme was at pH 7.0; the optimum temperature of activity was 80 and 37 °C for the free and immobilized enzyme, respectively. The inactivation rate constant for the immobilized enzyme at 37 °C was 0.0038 h?1 and the half-life was 182.41 h. The kinetic parameters obtained for the immobilized enzyme gave a Michaelis–Menten constant (K m) of 49.10 mM and a maximum reaction velocity (V max) of 205.03 U/g. Furthermore, the reuse of the lipase immobilized by adsorption allowed us to observe that it could be reused for 10 successive cycles, duration of each cycle (1 h), maintaining 33 % of the initial activity.  相似文献   

5.
The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent Km and Vmax for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month’s storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.  相似文献   

6.
Oxalate decarboxylase, an oxalate degradation enzyme used for medical diagnosis and decreasing the oxalate level in the food or paper industry, was covalently immobilized to Eupergit C. Different immobilization parameters, including ratio of enzyme to support, ammonia sulfate concentration, pH, and incubation time, were optimized. Under the condition of enzyme/support ratio at 1:20, pH 9, with 1.5 mol/L (NH4)2SO4, room temperature, and shaking at 30 rpm for 24 hr, activity recovery of immobilized Oxdc reached 90% with an apparent specific activity of 0.44 U/mg support. The enzymatic properties of immobilized Oxdc were investigated and compared with those of the soluble enzyme. Both shared a similar profile of optimum conditions; the optimum pH and temperature for soluble and immobilized Oxdc were 3.5 and 50°C, respectively. The immobilized enzyme was more stable at lower pH and higher temperatures. The kinetic parameters for soluble and immobilized enzyme were also determined.  相似文献   

7.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

8.
3-Phosphoglycerate kinase (ATP:3-phospho-d-glycerate 1-phosphotransferase, EC 2.7.2.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 88 units g?1 xerogel. The activity versus pH profile showed a sharper maximum at pH 6.5 in the case of the immobilized enzyme. The immobilized enzyme had a broad apparent optimum temperature range between 40 and 50°C. The apparent Km values of the immobilized 3-phosphoglycerate kinase were lower for both 3-phosphoglycerate and ATP than those of the soluble enzyme. In the case of the immobilized enzyme stabilities were enhanced.  相似文献   

9.
Watermelon (Citrullus vulgaris) urease was immobilized in 3.5% alginate leading to 72% immobilization. There was no leaching of the enzyme over a period of 15 days at 4°C. It continued to hydrolyse urea at a faster rate upto 90 min of incubation. The immobilized urease exhibited a shift of apparent pH optimum by one unit towards acidic side (from pH 8.0 to 7.0). The Km was found to be 13.3 mM; 1.17 times higher than the soluble enzyme (11.4 mM). The beads were fairly stable upto 50°C and exhibited activity even at ?10°C. The enzyme was significantly activated by ME and it exhibited two peaks of activation; one at lower concentration and another at higher concentration. Time-dependent ureolysis in presence of ME progressed at a much elevated rate. Unlike soluble enzyme, which was inhibited at 200 mM urea, the immobilized enzyme was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2000 mM urea. Moreover, the inhibition caused by high urea concentration was partially abolished by ME. The significance of the observations is discussed.  相似文献   

10.
Glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 5.5– 6.0 units g?1solid. The optimum pH for catalytic activity was pH 3.8. The apparent optimum temperature was found at 60°C. With soluble starch as substrate the Km value was 14 mg ml?1. The pH for maximum stability was pH 4.0–4.5. In the presence of 8 m urea the immobilized glucoamylase retained most of its catalytic activity but it was more susceptible to guanidinium hydrochloride than the soluble enzyme. The practical applicability of immobilized glucoamylase was tested in batch process and continuous operation.  相似文献   

11.
Purified α-amylase from a soil bacterium Bacillus sp. SKB4 was immobilized on coconut coir, an inexpensive cellulosic fiber, with the cross-linking agent glutaraldehyde. The catalytic properties and stability of the immobilized enzyme were compared with those of its soluble form. The enzyme retained 97.2% of its activity and its catalytic properties were not drastically altered after immobilization. The pH optimum and stability of the immobilized enzyme were shifted towards the alkaline range compared to the free enzyme. The optimum temperature for enzymatic activity was 90°C in both forms of the enzyme. The soluble and immobilized enzyme retained 19% and 70% of original activity, respectively, after pre-incubation for 1 h at 90°C. Immobilized amylase was less susceptible to attack by heavy metal ions and showed higher Km and Vmax values than its free form. The bound enzyme showed significant activity and stability after 6 months of storage at 4°C. All of these characteristics make the new carrier system suitable for use in the bioprocess and food industries.  相似文献   

12.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

13.
Urease from dehusked seeds of watermelon was immobilized in 1.5% agarose gel with 53.9% entrapment. There was negligible leaching (<10% at 4°C) and the same gel membrane could repeatedly be used for seven days. The immobilization exhibited no apparent change in the optimum pH but there was a significant decrease in the optimum temperature (50°C as compared to 65°C for soluble urease). The immobilized urease revealed an apparentK m of 9.3±0.3 mM; 1.2 times lower than the soluble enzyme (11.4±0.2 mM). Unlike soluble enzyme which was inhibited at 200 mM urea, the immobilized urease was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2 M urea. The time-dependent thermal inactivation kinetics at 48 and 52°C was found to be biphasic, in which half of the initial activity was destroyed more rapidly than the remaining half. These gel membranes were also used for estimating the urea content of the blood samples from the University hospital. The results obtained matched well with those obtained by the usual method employed in the clinical pathology laboratory. The significance of these observations is discussed.  相似文献   

14.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

15.
Recombinant exoinulinase was partially purified from the culture supernatant ofS. cerevisiae by (NH4)2SO4 precipitation and PEG treatment. The purified inulinase was immobilized onto Amino-cellulofine with glutaraldehyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 60°C, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 60°C. 100% of enzyme activity was observed even after incubation for 24 hr at 60°C. In the operation of a packed-bed reactor containing 412 U inulinase, dahalia inulin of 7.5%(w/v) concentration was completely hydrolyzed at flow rate of 2.0 mL/min at 60°C, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0 mL/min flow rate with 2.5% inulin at 60°C, the reactor was successfully operated over 30 days without loss of inulinase activity.  相似文献   

16.
Aerobic cultures of an actinomycete were found to produce penicillin V acylase (PVA) (PA, EC-3.5.1.11) extracellularly. The presence of L-2-3 diamino-propionic acid in cell wall and formation of sclerotia on culture media led to its identification as Chainia, a sclerotial Streptomyces. Partially purified acylase was adsorbed on kieselguhr and entrapped in polyacrylamide gel. The immobilized preparation proved effective with respect to retention of enzyme and enzyme activity even after 15 successful cycles. The pH optimum for crude enzyme was in the range of pH 7.5–8.0, and for the (NH4)2 SO4 fraction it was pH 8.5. The immobilized enzyme showed maximal activity at pH 9.5. The optimum temperature for acylase activity was at 55°C. The crude enzyme, ammonium sulfate fraction, and immobilized enzyme showed K m value for penicillin V of 6.13 mM, 14.3 mM, and 17.1 mM, respectively. Received: 11 December 1997 / Accepted: 9 April 1998  相似文献   

17.
A simple procedure for the immobilization of β-amylase (EC3.2.1.2) on IR-120 Al3+ is described. Immobilization brought about a slight shift in the optimum pH towards the alkaline side relative to that of the soluble enzyme. Immobilized β-amylase showed a broader temperature optima (45–55°C) compared with the soluble enzyme (45°C). A six-fold increase in the Km was also noticed. On storage and repeated use the immobilized enzyme retained approximately 60% of its initial activity up to 120 days at room temperature.  相似文献   

18.
Abstract

This work focuses on the immobilization of a crude inulinase extract obtained by solid-state fermentation using spray-drying technology. Maltodextrin and arabic gum were used as immobilizing agents. The effects of inlet air temperature, maltodextrin/arabic gum ratio and mass fraction of crude enzyme extract on the activity of immobilized inulinase were assessed using a central composite rotatable design (CCRD) (23). The optimum operational conditions for the immobilization of inulinase by spray-drying was obtained at an inlet air temperature of 200°C, mass fraction of crude enzyme extract of 0.5 wt% and using only arabic gum as immobilizing agent. The immobilized enzyme had good thermostability, comparable with other inulinases obtained from different microorganisms. The method used gave good enzyme activity after immobilization and could be applied to other enzymes which have good thermal stability.  相似文献   

19.
Endo-β-glucanase (endo-β-1,4-glucano-glucanase EC 3.2.1.4), isolated from Trichoderma reesei, was immobilized in calcium alginate beads, retaining 75% of its original activity. The polyanionic moiety surrounding the immobilized enzyme displaced the pH-activity profile to alkaline regions with respect to that of the free enzyme. The enzyme was inhibited by carboxymethylcellulose, but this inhibition appeared to be decreased by immobilizatíon. The enzyme immobilized in alginate beads showed a Km value (1.02% w/v) lower than that of the enzyme (1.31%). The apparent Vmax of immobilized cellulase preparations (238.3 μmol glucose/ml × h) decreased by a factor of 0.59 with respect to that of the soluble enzyme. The optimum temperature (60°C) of the free and entrapped enzymes remained unaltered. In contrast, the half-life of the endoglucanase immobilized in calciumalginate beads was 4.6 h at 55°C and 5.4 h at 60°C, while that of the free enzyme was 3.0 h at 55°C and 1.2 h at 60°C. A technological application of the immobilized enzymes was tested using wheat straw as a source of fermentable sugars. The hydrolytic degradation of straw, by means of a crude extract of free and immobilized cellulases and β-glucosidase, released a large amount of reducing sugars from wheat straw after 48 h (between 250–720 mg glucose/g straw), carrying out more than a 90% saccharification. A mixture of immobilized β-glucosidase and free cellulases maintained 80% of the activity of the soluble counterparts, and the co-immobilization of both types of enzymes reduced by hydrolytic efficiency to half.  相似文献   

20.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号