首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Undergraduate laboratory exercises addressing aspects of cancer biology such as increased cell proliferation, gain-of-function signaling mutations and tumour formation often rely on tissue culture or even small mammal models. Many departments have limited or no access to these tools, and even well-equipped departments face logistical problems when incorporating these models into laboratory classes. I have developed a laboratory exercise using the microscopic worm, C. elegans, to demonstrate the effects of Notch receptor mutations on cell proliferation. Notch, which is activated by juxtacrine signaling, is mutated in many human cancers. In this exercise, students compare the germline phenotypes of worms that have a loss-of-function Notch mutation (no cells in the germline) or a gain-of-function Notch mutation (over-proliferation resulting in a germline tumour). Students also genotype the worms and perform sequence analysis to determine the effects of the mutations on the protein sequence. This laboratory exercise demonstrates oncogenic proliferation, correlates genotype to phenotype, exposes students to model organisms and introduces sequence databases and analysis. In addition to cancer biology courses, this exercise could be incorporated in courses with a focus on genetics, cell biology or developmental biology.  相似文献   

2.
Yang Z  Ro S  Rannala B 《Genetics》2003,165(2):695-705
The role of somatic mutation in cancer is well established and several genes have been identified that are frequent targets. This has enabled large-scale screening studies of the spectrum of somatic mutations in cancers of particular organs. Cancer gene mutation databases compile the results of many studies and can provide insight into the importance of specific amino acid sequences and functional domains in cancer, as well as elucidate aspects of the mutation process. Past studies of the spectrum of cancer mutations (in particular genes) have examined overall frequencies of mutation (at specific nucleotides) and of missense, nonsense, and silent substitution (at specific codons) both in the sequence as a whole and in a specific functional domain. Existing methods ignore features of the genetic code that allow some codons to mutate to missense, or stop, codons more readily than others (i.e., by one nucleotide change, vs. two or three). A new codon-based method to estimate the relative rate of substitution (fixation of a somatic mutation in a cancer cell lineage) of nonsense vs. missense mutations in different functional domains and in different tumor tissues is presented. Models that account for several potential influences on rates of somatic mutation and substitution in cancer progenitor cells and allow biases of mutation rates for particular dinucleotide sequences (CGs and dipyrimidines), transition vs. transversion bias, and variable rates of silent substitution across functional domains (useful in detecting investigator sampling bias) are considered. Likelihood-ratio tests are used to choose among models, using cancer gene mutation data. The method is applied to analyze published data on the spectrum of p53 mutations in cancers. A novel finding is that the ratio of the probability of nonsense to missense substitution is much lower in the DNA-binding and transactivation domains (ratios near 1) than in structural domains such as the linker, tetramerization (oligomerization), and proline-rich domains (ratios exceeding 100 in some tissues), implying that the specific amino acid sequence may be less critical in structural domains (e.g., amino acid changes less often lead to cancer). The transition vs. transversion bias and effect of CpG dinucleotides on mutation rates in p53 varied greatly across cancers of different organs, likely reflecting effects of different endogenous and exogenous factors influencing mutation in specific organs.  相似文献   

3.
Genotypic selection methods detect rare sequence changes in populations of DNA molecules. These methods have been used to investigate the chemical induction of mutation and for the detection and diagnosis of cancer. The possible use of genotypic selection for improving current risk assessment practices is based on the premise that the frequency of somatic mutation is of critical importance in understanding and modeling carcinogenesis. If genotypic selection can measure the induction of specific mutations that disrupt normal cell/tissue homeostasis, then it could provide key mechanistic information for cancer risk assessment. For example, genotypic selection data might support a particular low-dose extrapolation method or characterize the relationship between rodent and human cancer risk. Strategies for evaluating the use of genotypic selection in cancer risk assessment include the concept of developing a battery of targets that detect a range of agent-specific effects. Ideal targets to examine by genotypic selection are the oncogene and tumor suppressor gene mutations frequently detected in human tumors because these are thought to represent tumor-initiating events. The most commonly occurring basepair (bp) substitutions within the ras and p53 genes are identified. Also, the battery of genotypic selection methods is defined in terms of the most important mutational specificities to include. In theory, the major basepair substitution mutations induced by 29 of 31 chemical carcinogens could be detected by analyzing three different mutations: G:C-->T:A, G:C-->A:T, and A:T-->T:A. Genotypic selection will have the greatest impact on risk assessment if measurement of spontaneous mutation is possible. Data from phenotypic selection assays suggest this corresponds to detection of mutant fractions of approximately 10(-7), and this would necessitate examining DNA samples containing >10(7) target molecules. Despite its apparent potential, considerable development and validation is needed before genotypic selection data can be applied to cancer risk assessment.  相似文献   

4.
The resonances of all the base protons and most of the sugar protons in both strands of the 17 base-pair OR3 operator of the phage lambda, and of the vC3 single base-pair mutant, have been assigned using two-dimensional nuclear magnetic resonance methods. The chemical shift and nuclear Overhauser effect data for these two DNA sequences reveal no structural perturbation at sites distal to the mutation, neither are there significant changes in structure immediately surrounding the altered base-pair in the mutant sequence. These results are consistent with the model proposed by Ohlendorf et al. (1982), based on crystallographic data on the cro protein, for the OR3-cro protein interaction. The data from these solution studies are examined and discussed in the light of this model. This work demonstrates that nuclear magnetic resonance chemical shifts and nuclear Overhauser effect intensities provide a method for comparing the solution structures of DNA molecules. From the resolution available in the spectra of the 17 base-pair operators studied, it is clear that DNA duplexes of up to 30 or more base-pairs can be studied using phase-sensitive methods.  相似文献   

5.
The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50–70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.  相似文献   

6.
In order to grasp the features arising from cellular discreteness and individuality, in large parts of cell tissue modelling agent-based models are favoured. The subclass of off-lattice models allows for a physical motivation of the intercellular interaction rules. We apply an improved version of a previously introduced off-lattice agent-based model to the steady-state flow equilibrium of skin. The dynamics of cells is determined by conservative and drag forces, supplemented with delta-correlated random forces. Cellular adjacency is detected by a weighted Delaunay triangulation. The cell cycle time of keratinocytes is controlled by a diffusible substance provided by the dermis. Its concentration is calculated from a diffusion equation with time-dependent boundary conditions and varying diffusion coefficients. The dynamics of a nutrient is also taken into account by a reaction-diffusion equation. It turns out that the analysed control mechanism suffices to explain several characteristics of epidermal homoeostasis formation. In addition, we examine the question of how in silico melanoma with decreased basal adhesion manage to persist within the steady-state flow equilibrium of the skin. Interestingly, even for melanocyte cell cycle times being substantially shorter than for keratinocytes, tiny stochastic effects can lead to completely different outcomes. The results demonstrate that the understanding of initial states of tumour growth can profit significantly from the application of off-lattice agent-based models in computer simulations.  相似文献   

7.
Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascertained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population. A challenge to comprehensive cataloging of mosaic mutations and their consequences is the presence of heterogeneous mixtures of cells, rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandom manner, and several chromosomes and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery.  相似文献   

8.
9.
To test the hypothesis that reactive species in the oxygen cascade are responsible for spontaneous mutation, we examined the spectra of oxygen and hydrogen peroxide-induced mutations at the hprt locus in a human B-lymphoblastoid cell line. We compared these spectra with the spontaneous mutational spectrum. Large gene alterations were studied by Southern analysis of individual TGR clones. A combination of high fidelity polymerase chain reaction, denaturing gradient gel electrophoresis and direct DNA sequencing were used to detect and identify point mutations in exon 3 of hprt. With regard to spontaneous mutations, a previous study showed that 39% of the spontaneous TGR clones had large gene alterations. In the present study, the analysis of spontaneous point mutations within exon 3 revealed two hotspots. A one base-pair deletion (-A) at base-pair 256 or 257 and a two base-pair deletion (-GG) at base-pair 237 and 238, were detected in triplicate cultures. Each of the hotspots comprised about 1% of the TGR mutants. The analysis of individual oxygen-induced TGR clones (48 h, 910 microM-O2) showed 43% had large gene alterations similar to the spontaneous TGR clones. However, none of the spontaneous point mutation hotspots was found among triplicate oxygen-treated cultures. Two point mutations in common with H2O2-treated cultures were found in one of the three oxygen-treated cultures. Hydrogen peroxide-induced mutations (1 h, 20 microM) also differed from spontaneous mutations. Only 24% of the hydrogen peroxide-induced TGR clones had large gene alterations. The analysis of point mutations showed three hotspots within exon 3 of hprt. An AT to TA transversion at base-pair 259 had an average frequency of 3% of all TGR mutants (present in all of 3 H2O2-treated cultures). Two GC to CG transversions at base-pairs 243 and 202 were present at a frequency of 0.6% and 0.4%, respectively. A five base-pair deletion (base-pair 274 to 278) was present at an average frequency of 0.3%. The latter three mutations were detected in two of three H2O2-treated cultures. Thus, the point mutation spectra of both oxygen and hydrogen peroxide were significantly different from the spontaneous spectrum. The oxygen and hydrogen peroxide-induced spectra shared some features, suggesting that oxygen and hydrogen peroxide share some but not all pathways for induction of mutations within the DNA sequence studied here.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Hodgkin's disease (HD) is a lymphoid neoplasm characterized by a low frequency of malignant giant tumor cells, known as Hodgkin's and Reed-Sternberg (HRS) cells. Sequence analysis of the immunoglobulin heavy chain hypervariable region (IgH V) genes of HRS cells revealed multiple nucleotide substitutions, indicating somatic mutations, and suggested that HRS cells originate from germinal center B cells or their progeny. We previously reported that CD99-antisense transfected B cell lines led to the generation of cells with a HRS phenotype. Because it is considered that HRS cells in HD carry somatic mutations of the IgH genes, we assume that somatic mutation may take place in the IgH genes of HRS-like cells which do not express CD99. Here we report that CD99 downregulated BJAB cell line has several mutations in IgH V genes. The frequency of mutation was 5.2 x 10(-4) mut.bp(-1) out of total sequenced cell clones. On the contrary, control vector transfected BJAB cell line or CD99 downregulated IM9 cell line did not show any mutations on single strand conformational polymorphism (SSCP) and sequence analysis. We expect that the analysis of the mutation pattern of the CD99-deficient BJAB cell line might be the basis for the understanding of the molecular and cellular mechanism that regulate somatic mutation and B cell selection.  相似文献   

11.
MOTIVATION: B cells responding to antigenic stimulation can fine-tune their binding properties through a process of affinity maturation composed of somatic hypermutation, affinity-selection and clonal expansion. The mutation rate of the B cell receptor DNA sequence, and the effect of these mutations on affinity and specificity, are of critical importance for understanding immune and autoimmune processes. Unbiased estimates of these properties are currently lacking due to the short time-scales involved and the small numbers of sequences available. RESULTS: We have developed a bioinformatic method based on a maximum likelihood analysis of phylogenetic lineage trees to estimate the parameters of a B cell clonal expansion model, which includes somatic hypermutation with the possibility of lethal mutations. Lineage trees are created from clonally related B cell receptor DNA sequences. Important links between tree shapes and underlying model parameters are identified using mutual information. Parameters are estimated using a likelihood function based on the joint distribution of several tree shapes, without requiring a priori knowledge of the number of generations in the clone (which is not available for rapidly dividing populations in vivo). A systematic validation on synthetic trees produced by a mutating birth-death process simulation shows that our estimates are precise and robust to several underlying assumptions. These methods are applied to experimental data from autoimmune mice to demonstrate the existence of hypermutating B cells in an unexpected location in the spleen.  相似文献   

12.
Somatic mutation plays a key role in transforming normal cells into cancerous cells. The analysis of cancer progression therefore requires the study of how point mutations and chromosomal mutations accumulate in cellular lineages. The spread of somatic mutations depends on the mutation rate, the number of cell divisions in the history of a cellular lineage, and the nature of competition between different cellular lineages. We consider how various aspects of tissue architecture and cellular competition affect the pace of mutation accumulation. We also discuss the rise and fall of somatic mutation rates during cancer progression.  相似文献   

13.
B Rogerson  J Hackett  Jr  A Peters  D Haasch    U Storb 《The EMBO journal》1991,10(13):4331-4341
We have previously demonstrated that B lymphocyte specific somatic mutations are introduced into the variable regions of immunoglobulin kappa transgenes in two independent transgenic mouse lines. The frequency, distribution and nature of these mutations strongly suggest that they arose as a result of the process of somatic hypermutation, which is responsible, in part, for affinity maturation during an immune response. Unexpectedly, in these multiple copy transgenic lines, many of the transgene copies showed no evidence of somatic mutation. This paradox was addressed by determining the sequence of each transgene copy in several B cell hybridomas derived from a mouse line carrying three copies of the kappa transgene. It was found that the somatic hypermutation process in different B cells from the same mouse preferentially targets one, but not the same, transgene copy. We present a model, based on the pattern of this targeting, which links somatic hypermutation to the orientation of the Ig gene relative to the direction of DNA replication.  相似文献   

14.
Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes   总被引:100,自引:0,他引:100  
Using in vitro gene amplification by the polymerase chain reaction (PCR) and mutation detection by the RNAase A mismatch cleavage method, we have examined c-K-ras genes in human pancreatic carcinomas. We used frozen tumor specimens and single 5 micron sections from formalin-fixed, paraffin-embedded tumor tissue surgically removed or obtained at autopsy. Twenty-one out of 22 carcinomas of the exocrine pancreas contained c-K-ras genes with mutations at codon 12. In seven cases tested, the mutation was present in both primary tumors and their corresponding metastases. No mutations were detected in normal tissue from the same cancer patients or in five gall bladder carcinomas. We conclude from these results that c-K-ras somatic mutational activation is a critical event in the oncogenesis of most, if not all, human cancers of the exocrine pancreas.  相似文献   

15.
Blood vessel development is a vital process during embryonic development, during tissue growth, regeneration and disease processes in the adult. In the past decade researchers have begun to unravel basic molecular mechanisms that regulate the formation of vascular lumen, sprouting angiogenesis, fusion of vessels, and pruning of the vascular plexus. The understanding of the biology of these angiogenic processes is increasingly driven through studies on vascular development at the cellular resolution. Single cell analysis in vivo, advanced genetic tools and the widespread use of powerful animal models combined with improved imaging possibilities are delivering new insights into endothelial cell form, function and behavior angiogenesis. Moreover, the combination of in silico modeling and experimentation including dynamic imaging promotes insights into higher level cooperative behavior leading to functional patterning of vascular networks. Here we summarize recent concepts and advances in the field of vascular development, focusing in detail on the endothelial cell.  相似文献   

16.
Mutational changes can be conveniently classified into two sorts: those that appear to involve single genes and are generally referred to as gene mutations, and those that involve chromosomal segments containing many genes, or even whole chromosomes, and are referred to as chromosomal mutations. Both of these kinds of mutation occur in germ-cell lineages and contribute substantially to inherited disease, or pre-disposition to disease, and both also occur in somatic cells and contribute to acquired disease. The mutation rates for inherited disease ascribed to mutation in a single gene differ for different genes and are age-dependent. Moreover, a single disease entity, such as haemophilia B, may be the result of any one of a number of different alterations within the gene responsible for the disease. The mutation rate for inherited chromosomal mutation is also age-dependent, particularly so in the case of mutations involving alterations in chromosome number. Studies in experimental animals demonstrate that exposure to physical or chemical mutagens results in increasing the incidence of inherited gene and chromosomal mutations. However, such increases have not been unequivocally demonstrated in human populations exposed to known mutagens. Studies on mutation in human lymphoid or epithelial somatic cells clearly demonstrate an increased frequency in cells taken from people exposed to ionizing radiations or chemical mutagens or in cells exposed in vitro. The consequences of such mutations will depend upon their nature and the origins and functions of the cells in which they occur. Of particular importance are mutations influencing cell growth and proliferation, and both gene and chromosomal mutations are implicated as causal factors in the development of human cancers.  相似文献   

17.
Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.  相似文献   

18.
Cell differentiation in multicellular organisms has the obvious function during development of creating new cell types. However, in long-lived organisms with extensive cell turnover, cell differentiation often continues after new cell types are no longer needed or produced. Here, we address the question of why this is true. It is believed that multicellular organisms could not have arisen or been evolutionarily stable without possessing mechanisms to suppress somatic selection among cells within organisms, which would otherwise disrupt organismal integrity. Here, we propose that one such mechanism is a specific pattern of ongoing cell differentiation commonly found in metazoans with cell turnover, which we call “serial differentiation.” This pattern involves a sequence of differentiation stages, starting with self-renewing somatic stem cells and proceeding through several (non–self-renewing) transient amplifying cell stages before ending with terminally differentiated cells. To test the hypothesis that serial differentiation can suppress somatic evolution, we used an agent-based computer simulation of cell population dynamics and evolution within tissues. The results indicate that, relative to other, simpler patterns, tissues organized into serial differentiation experience lower rates of detrimental cell-level evolution. Self-renewing cell populations are susceptible to somatic evolution, while those that are not self-renewing are not. We find that a mutation disrupting differentiation can create a new self-renewing cell population that is vulnerable to somatic evolution. These results are relevant not only to understanding the evolutionary origins of multicellularity, but also the causes of pathologies such as cancer and senescence in extant metazoans, including humans.  相似文献   

19.
Mutations in protein kinases can drive cancer through alterations of the kinase activity or by uncoupling kinase activity from regulation. Changes to protein expression in Aurora A, a mitotic Ser/Thr kinase, are associated with the development of several human cancers, but the effects of somatic cancer-associated mutations have not been determined. In this study we show that Aurora A kinase activity is altered in different ways in three somatic cancer-associated mutations located within the catalytic domain; Aurora A(V174M) shows constitutively increased kinase activity, Aurora A(S155R) activity is decreased primarily due to misregulation, and Aurora A(S361*) activity is ablated due to loss of structural integrity. These alterations suggest vastly different mechanisms for the role of these three mutations in human cancer. We have further characterized the Aurora A(S155R) mutant protein, found that its reduced cellular activity and mislocalization are due to loss of interaction with TPX2, and deciphered the structural basis of the disruption at 2.5 Å resolution. Previous studies have shown that disruption of the Aurora A/TPX2 interaction results in defective spindles that generate chromosomal abnormalities. In a panel of 40 samples from microsatellite instability-positive colon cancer patients, we found one example in which the tumor contained only Aurora A(S155R), whereas the normal tissue contained only wild-type Aurora A. We propose that the S155R mutation is an example of a somatic mutation associated with this tumor type, albeit at modest frequency, that could promote aneuploidy through the loss of regulated interactions between Aurora A and its protein partners.  相似文献   

20.
Activating mutations of the oncogene K-ras are found in one third of all human cancers. Much of our knowledge on K-ras signal transduction and its influence on tumor initiation and progression comes from in vitro studies with cell lines. However, mouse models of human cancer allow a much more faithful recapitulation of the human disease, and the in vivo perspective is crucial for our understanding of neoplasia. In recent years, several new murine models for K-ras-induced tumorigenesis have been described. They allow new insights into the specific role that oncogenic K-ras proteins play in different solid tumors, and they permit the molecular dissection of the pathways that are initiated by somatic mutations in subsets of cells. Key advances have been made by the use of tissue-specific and inducible control of expression, which is achieved by the Cre/LoxP technology or the tetracycline system. from these sophisticated models, a common picture emerges: The effects of K-ras on tumor initiation depend strongly on the cellular context, and different tissues vary in their susceptibility to K-ras transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号