首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments.  相似文献   

2.
We have characterized the expression pattern of a gene, ddcA, involved in initial colonization of corn seeds by Pseudomonas putida KT2440. The ddcA gene codes for a putative membrane polypeptide belonging to a family of conserved proteins of unknown function. Members of this family are widespread among prokaryotes and include the products of a Salmonella enterica serovar Typhimurium gene expressed during invasion of macrophages and psiE, an Escherichia coli phosphate starvation-inducible gene. Although its specific role is undetermined, the presence of ddcA in multicopy restored the seed adhesion capacity of a KT2440 ddcA mutant. Expression of ddcA is growth phase regulated, being maximal at the beginning of stationary phase. It is independent of RpoS, nutrient depletion, or phosphate starvation, and it is not the result of changes in the medium pH during growth. Expression of ddcA is directly dependent on cell density, being also stimulated by the addition of conditioned medium and of seed exudates. This is the first evidence suggesting the existence of a quorum-sensing system in P. putida KT2440. The potential implication of such a signaling process in seed adhesion and colonization by the bacterium is discussed.  相似文献   

3.
4.
The extracellular 373-kDa PehA heme peroxidase of Pseudomonas putida KT2440 has two enzymatic domains which depend on heme cofactor for their peroxidase activity. A null pehA mutant was generated to examine the impact of PehA in rhizosphere colonization competence and the induction of plant systemic resistance (ISR). This mutant was not markedly hampered in colonization efficiency. However, increase in pehA dosage enhanced colonization fitness about 30 fold in the root and 900 fold in the root apex. In vitro assays with purified His-tagged enzymatic domains of PehA indicated that heme-dependent peroxidase activity was required for the enhancement of root tip colonization. Evaluation of live/dead cells confirmed that overexpression of pehA had a positive effect on bacterial cell viability. Following root colonization of rice plants by KT2440 strain, the incidence of rice blast caused by Magnaporthe oryzae was reduced by 65% and the severity of this disease was also diminished in comparison to non-treated plants. An increase in the pehA dosage was also beneficial for the control of rice blast as compared with gene inactivation. The results suggest that PehA helps P. putida to cope with the plant-imposed oxidative stress leading to enhanced colonization ability and concomitant ISR-elicitation.  相似文献   

5.
6.
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.  相似文献   

7.
[背景]广泛存在于革兰氏阴性菌和革兰氏阳性菌中的自诱导物autoinducer-2 (AI-2)能够介导细菌种内和种间通讯,并调节细菌的多种生理过程.然而恶臭假单胞菌KT2440能否感知AI-2信号还未见报道.[目的]挖掘介导恶臭假单胞菌KT2440对AI-2趋化反应的趋化受体,检测AI-2信号通过趋化受体对恶臭假单胞...  相似文献   

8.
The majority of the world’s crude oil reserves consist of highly biodegraded heavy and super heavy crude oils and oil sands that have not yet been fully exploited. These vast resources contain complex mixtures of carboxylic acids known as naphthenic acids (NAs). NAs cause major environmental and economic problems, as they are recalcitrant, corrosive and toxic. Although aromatic acids make up a small proportion of most NA mixtures, they have demonstrable toxicities to some organisms (e.g. some bacteria and algae) and ideally need to be removed or reduced by remediation. The present study analysed the ability of Pseudomonas putida KT2440 to degrade highly recalcitrant aromatic acids, as exemplified by the alkyl phenylalkanoic acid (4′-t-butylphenyl)-4-butanoic acid (t-BPBA) and the more degradable (4′-n-butylphenyl)-4-butanoic acid (n-BPBA). n-BPBA was completely metabolized after 14 days, with the production of a persistent metabolite identified as (4′-n-butylphenyl)ethanoic acid (BPEA) which resulted from removal of two carbon atoms from the carboxyl side chain (beta-oxidation) as observed previously with a mixed consortium. However, when n-BPBA concentration was increased two-fold, degradation decreased by 56% with a concomitant six-fold decrease in cell numbers, suggesting that at greater concentrations, n-BPBA may be toxic to P. putida KT2440. In contrast, P. putida KT2440 was unable to degrade the highly recalcitrant t-BPBA even after 49 days. These findings have implications for NA bioremediation in the environment.  相似文献   

9.
Pseudomonas putida KT2440 is becoming a new robust metabolic chassis for biotechnological applications, due to its metabolic versatility, low nutritional requirements and biosafety status. We have previously engineered P. putida KT2440 to be an efficient propionate producer from L-threonine, although the internal enzymes converting propionyl-CoA to propionate are not clear. In this study, we thoroughly investigated 13 genes annotated as potential thioesterases in the KT2440 mutant. One thioesterase encoded by locus tag PP_4975 was verified to be the major contributor to propionate production in vivo. Deletion of PP_4975 significantly decreased propionate production, whereas the performance was fully restored by gene complement. Compared with thioesterase HiYciA from Haemophilus influenza, thioesterase PP_4975 showed a faster substrate conversion rate in vitro. Thus, this study expands our knowledge on acyl-CoA thioesterases in P. putida KT2440 and may also reveal a new target for further engineering the strain to improve propionate production performance.  相似文献   

10.
Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food.  相似文献   

11.
Anhydrobiotic engineering aims to increase the level of desiccation tolerance in sensitive organisms to that observed in true anhydrobiotes. In addition to a suitable extracellular drying excipient, a key factor for anhydrobiotic engineering of gram-negative enterobacteria seems to be the generation of high intracellular concentrations of the nonreducing disaccharide trehalose, which can be achieved by osmotic induction. In the soil bacterium Pseudomonas putida KT2440, however, only limited amounts of trehalose are naturally accumulated in defined high-osmolarity medium, correlating with relatively poor survival of desiccated cultures. Based on the enterobacterial model, it was proposed that increasing intracellular trehalose concentration in P. putida KT2440 should improve survival. Using genetic engineering techniques, intracellular trehalose concentrations were obtained which were similar to or greater than those in enterobacteria, but this did not translate into improved desiccation tolerance. Therefore, at least for some populations of microorganisms, trehalose does not appear to provide full protection against desiccation damage, even when present at high concentrations both inside and outside the cell. For P. putida KT2440, it was shown that this was not due to a natural limit in desiccation tolerance since successful anhydrobiotic engineering was achieved by use of a different drying excipient, hydroxyectoine, with osmotically preconditioned bacteria for which 40 to 60% viability was maintained over extended periods (up to 42 days) in the dry state. Hydroxyectoine therefore has considerable potential for the improvement of desiccation tolerance in sensitive microorganisms, particularly for those recalcitrant to trehalose.  相似文献   

12.
13.
14.

Currently, biotransformation of 5-hydroxymethylfurfural (HMF) into a series of high-value bio-based platform chemicals is massively studied. In this study, selective biooxidation of HMF to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) by Pseudomonas putida KT2440 with superior titer, yield, and productivity was reported. The biocatalytic performances of P. putida KT2440 were optimized separately. Under optimal conditions, 100% yield of HMFCA was obtained when HMF concentration was less than 150 mM, while the maximum concentration of 155 mM was achieved from 160 mM HMF in 12 h. P. putida KT2440 was highly tolerate to HMF, up to 190 mM. Besides, it was capable of selective oxidation of other furan aldehydes to the corresponding carboxylic acids with good yield of 100%. This study further demonstrates the potential of P. putida KT2440 as a biocatalyst for biomass conversion, as this strain has been proved the capacity to convert and utilize many kinds of biomass-derived sugars and ligin-derived aromatic compounds.

  相似文献   

15.
Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 106 CFU g−1 soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.  相似文献   

16.
Pseudomonas putida is a promising bacterial host for producing natural products, such as polyketides and nonribosomal peptides. In these types of projects, researchers need a genetic toolbox consisting of plasmids, characterized promoters, and techniques for rapidly editing the genome. Past reports described constitutive promoter libraries, a suite of broad host range plasmids that replicate in P. putida, and genome-editing methods. To augment those tools, we have characterized a set of inducible promoters and discovered that IPTG-inducible promoter systems have poor dynamic range due to overexpression of the LacI repressor. By replacing the promoter driving lacI expression with weaker promoters, we increased the fold induction of an IPTG-inducible promoter in P. putida KT2440 to 80-fold. Upon discovering that gene expression from a plasmid was unpredictable when using a high-copy mutant of the BBR1 origin, we determined the copy numbers of several broad host range origins and found that plasmid copy numbers are significantly higher in P. putida KT2440 than in the synthetic biology workhorse, Escherichia coli. Lastly, we developed a λRed/Cas9 recombineering method in P. putida KT2440 using the genetic tools that we characterized. This method enabled the creation of scarless mutations without the need for performing classic two-step integration and marker removal protocols that depend on selection and counterselection genes. With the method, we generated four scarless deletions, three of which we were unable to create using a previously established genome-editing technique.  相似文献   

17.
18.
CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and widely applicable genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for tight and inducible control over CRISPR-Cas counter-selection. This control delays CRISPR-Cas counter-selection, granting more time for the editing event (e.g. by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three wild-type bacteria species (Escherichia coli MG1655, Pseudomonas putida KT2440 and Flavobacterium IR1) with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a simple gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.  相似文献   

19.
A physical mapping strategy has been developed to verify and accelerate the assembly and gap closure phase of a microbial genome shotgun-sequencing project. The protocol was worked out during the ongoing Pseudomonas putida KT2440 genome project. A macro-restriction map was constructed by linking probe hybridisation of SwaI- or I-CeuI-restricted chromosomes to serve as a backbone for the quick quality control of sequence and contig assemblies. The library of PCR-generated SwaI linking probes was derived from the sequence assembly after 3- and 6-fold genome coverage. In order to support gap closure in regions with ambiguous assemblies such as the repetitive sequence of the seven ribosomal operons, high-resolution Smith/Birnstiel maps were generated by Southern hybridisation of pulsed-field gel electrophoresis-separated rare-cutter complete/frequent-cutter partial digestions with rare-cutter fragment end probes. Overall 1.5 Mb of the 6.1 Mb P.putida KT2440 genome has been subjected to high-resolution physical mapping in order to align assemblies generated from shotgun sequencing.  相似文献   

20.
Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号