首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No gene-specific differences were found with respect to LH or testosterone pulsatile secretion (over 12 h), or in 12 hourly mean FSH concentrations in adult Booroola FF and ++ rams. Also, no differences between genotypes in the LH response to an injection of testosterone propionate, the FSH response to an infusion of bovine follicular fluid, or the testosterone response to injections of PMSG were noted. However, during the phase of seasonal testicular development, mean testosterone pulse amplitude (over 12 h) and the FSH response to 25 micrograms GnRH were higher in FF than in ++ rams (P less than 0.05); there were also significant effects of sire (P less than 0.05 in FF genotype only) and litter size (P less than 0.05) on testosterone pulse amplitude and GnRH-stimulated FSH release, respectively. During the breeding season, mean LH, but not FSH, concentrations were higher in FF than in ++ rams, after an injection of 0.5 micrograms GnRH; LH release was not affected by sire or litter size (P greater than 0.05). Long-term studies revealed that the FF rams were born in significantly larger litters, they weighed significantly less than ++ rams (P less than 0.05), and that bodyweight was significantly correlated (P less than 0.05) with litter size. There were no differences in testis size, and testis size was not significantly correlated with bodyweight. There was a strong tendency (P = 0.056) for overall mean FSH concentrations, measured weekly for 9 months, to be highest more often in FF than in ++ rams.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of the Booroola (Bo) F gene on the reproductive development of Bo × South Australian Merino (12Bo) rams was examined. Half Bo rams were offspring of FF (homozygous carrier), F+ (heterozygous carrier) or ++ (homozygous non-carrier) Bo sires, so that the expected frequency of 12Bo rams carrying the gene should be approximately 1.0, 0.5 or 0.0, respectively. The genotype of each Bo sire was defined on the basis of the proportion of daughters with ? 3 ovulations. The reproductive development of the 12Bo rams corresponding with each sire genotype was studied between 5 and 15 months of age. Traits recorded were: live weight, testicular volume, preputial adhesion score, semen volume, semen density, proportion of rams with ejaculates containing spermatozoa, proportion of rams that mounted and proportion of rams that served oestrous ewes. There were no significant differences among sire genotypes in the traits studied, except for preputial adhesion score (FF < F+ = ++, P < 0.05) and proportion of rams that mounted (FF = F+ < ++, P < 0.05) at 5 months of age. The relevance of these differences is not known but could result from sampling problems. It is concluded that (1) the F gene had no discernible role in male reproductive development between 5 and 15 months of age and (2) the traits examined did not allow a distinction between carrier and non-carrier rams of the F gene.  相似文献   

3.
The relationships between testis size, hormone secretion and sperm production were studied during the spring (December) and autumn (May) in rams of two breeds with different breeding seasons and body weights (Corriedale and Australian Merino) maintained on native pastures and under natural photoperiods in Uruguay. Blood samples were collected at 20-min intervals during a 260-360-min period in 13 rams (four Corriedale, nine Australian Merino) during the late spring and autumn. Rams were weighed and testis size was estimated by orchimetry at each time period. Sperm production was estimated during a 2-week period, 2 months before blood collection and during each week following every blood collection. There was no relationship between testicular size and sperm production measured at the same time, nor between live weight and sperm production. In contrast, testicular volume during the late spring was correlated with sperm production in the autumn (r = 0.65; P = 0.02). The autumn serum LH was higher in Corriedale than in Merino rams. LH pulsatility was unaffected by season, but LH pulse frequency tended to be higher in Corriedale than in Merino rams, particularly in the late spring (2.37 versus 1.56 pulses/6 h; P = 0.08). Serum testosterone concentration was similar in both breeds and seasons. FSH levels were higher in the late spring than in the autumn in both breeds (Corriedale: 2.83 +/- 0.48 versus 2.17 +/- 0.24 ng x mL(-1); Merino: 2.23 +/- 0.24 versus 1.88 +/- 0.17 ng x mL(-1)). FSH and testosterone concentrations during the late spring were positively correlated with autumn sperm production (P = 0.07 and P = 0.03, respectively). In conclusion, the present experiment suggests that LH secretion is not a good parameter for the prediction of sperm production. In contrast, in our conditions (breeds and native pastures) testicular size and testosterone or FSH concentrations from the late spring may be used to predict sperm production in the autumn.  相似文献   

4.
Blood haematocrit and liveweight were determined throughout pregnancy and the post-partum period in 217 Booroola Merino and Merino ewes in order to relate these parameters to litter size at birth. In pregnant ewes, haematocrit declined from three until five months gestation, rose immediately after parturition then declined until two months post-partum. During the third to fifth month of gestation, haematocrit decreased in proportion to litter size. Nonpregnant ewes, measured at similar intervals, did not show the same pattern. Haematocrit of nonpregnant animals was higher than that of triplet-bearing ewes at three, four and five months gestation, but was only significantly different to single- and twin-bearing ewes at five months. The liveweight of pregnant ewes increased up to parturition and then declined until two months post-partum. The liveweight of nonpregnant ewes increased over the experimental period. It was concluded that the number of foetuses a ewe carried had significant effects on the decline in haematocrit during pregnancy. Haematocrit was not a precise indicator of litter size in sheep. Haematocrit, ewe liveweight and ovulation rate together in a multiple regression only accounted for 37% of the variation in litter size.  相似文献   

5.
Adult Soay rams were infused for 21 days with 50 micrograms buserelin/day, using s.c. implanted osmotic mini-pumps. The continuous treatment with this LHRH agonist induced a supraphysiological increase in the blood concentrations of LH (15-fold) and testosterone (5-fold) followed by a decrease below pre-treatment values after 10 days. The blood concentrations of FSH showed only a minimal initial increase but the subsequent decrease was dramatic, occurring within 1 day. By Day 10 of treatment, the blood concentrations of all 3 hormones were low or declining, LH pulses were absent in the serial profiles based on 20-min blood samples and the administration of LHRH antiserum failed to affect the secretion of LH or testosterone. By Day 21, the secretion of FSH, LH and testosterone was maximally suppressed. The i.v. injection of 400 ng LHRH was totally ineffective at stimulating an increase in the blood concentrations of LH while the i.v. injection of 50 micrograms ovine LH induced a normal increase in the concentrations of testosterone; this confirmed that the chronic treatment with the LHRH agonist had desensitized the pituitary gonadotrophs without markedly affecting the responsiveness of the testicular Leydig cells. The ratio of bioactive: radioimmunoactive LH did not change during the treatment. The long-term effect of the infusion was fully reversible as shown by the increase in the blood concentrations of FSH, LH and testosterone and the return of normal pulsatile fluctuations in LH and testosterone within 7 days of the end of treatment.  相似文献   

6.
Plasma LH and testosterone levels did not differ significantly between high and low fertility rams before or after sexual stimulation (ejaculation or teasing). Repeated stimulation caused significant elevation of mean plasma LH and an almost significant rise in testosterone concentration. Plasma testosterone peaks followed those of LH after 30-60 min. A single sexual stimulation did not always cause an LH peak or increase the mean LH level.  相似文献   

7.
The continuous presence of active male small ruminants prevents seasonal anestrus in females, but evidence of the same mechanism operating from the females to the males is scarce. This study assessed the effects of the continuous presence of ewes in estrus in spring on ram sexual activity, testicular size and echogenicity, and LH and testosterone concentrations. On 1 March, 20 rams were assigned to two groups (n = 10 each): isolated (ISO) from other sheep, or stimulated (STI) by 12 ewes, which were separated from the rams by an openwork metal barrier, allowing contact between sexes. Each week, four ewes were induced into estrus by intravaginal sponges. Live weight, scrotal circumference, testicular width (TW) and length (TL) were recorded at the beginning and at the end of the experiment, and testicular volume (TV) was calculated; at the same time, testicular ultrasonography and color Doppler scanning were performed. Blood samples (March to May) were collected once per week for testosterone determinations, and at the end of the experiment, blood samples were collected for 6 h at 20-min intervals for LH analysis. Rams were exposed to four estrous ewes in a serving-capacity test. Scrotal circumference, TW and TL were higher in the STI than in the ISO rams (P < 0.05) in May, and TV was higher (P < 0.05) in the STI (391 ± 17 cm3) than in the ISO rams (354 ± 24 cm3). In ISO rams, the number of white pixels was higher (P < 0.01) in May (348 ± 74) than in March (94 ± 21) and differed significantly (P < 0.01) from that of the STI rams in May (160 ± 33). In ISO rams, the number of grey pixels was higher (P < 0.05) in May (107 ± 3) than it was in March (99 ± 1). Stimulated and ISO rams did not differ significantly in mean LH plasma concentrations (0.8 ± 0.5 v. 0.9 ± 0.4 ng/ml), LH pulses (2.1 ± 0.5 v. 2.2 ± 0.2) and amplitude (2.0 ± 0.4 v. 3.2 ± 0.7 ng/ml, respectively). Stimulated rams had significantly higher testosterone concentrations than ISO rams from April to the end of the experiment. Stimulated rams performed more (P < 0.05) mountings with intromission (3.0 ± 0.4) than did ISO rams (1.5 ± 0.5). In conclusion, after 3 months in the continuous presence of ewes in estrus in spring, rams had higher TV and some testicular echogenic parameters were modified than isolated rams. Although exposed rams also had higher levels of testosterone after 2 months in the presence of estrous ewes, their LH pulsatility at the end of the study was not modified.  相似文献   

8.
Reproductive biology of the Booroola Merino sheep   总被引:5,自引:0,他引:5  
This paper reviews the genetic and physiological characteristics of the Booroola Merino, one of the four most prolific sheep breeds in the world, and which was acquired by CSIRO in 1958 from a commercial sheep property, 'Booroola', Cooma, N.S.W. The exceptional prolificacy of this genotype--e.g. mean flock ovulation rate in 1982 of 4.2 (range 1-10) and mean litter size of 2.5 (range 1-7)--is largely attributable to a single gene (F) of uncertain origin which increases ovulation rate. Crosses of the Booroola with other Merinos produce progeny which have a 47-87% increase in ovulation rate, a 45-56% increase in litter size at birth, and a 1-33% reduction in lamb survival relative to control Merinos. This represents a 16-37% increase in the number of lambs weaned per ewe joined in favour of the Booroola crosses. The exact site of action of the F gene is not well established, although it is expressed primarily at the ovary, where more than the normal number of follicles mature and ovulate each oestrous cycle. This may result from some abnormality of the Booroola follicle itself or it may reflect differences in Booroola gonadotrophin secretion. There is some evidence that Booroola ewes have elevated plasma concentrations of follicle stimulating hormone (FSH) early in life and during the oestrous cycle, and that FSH concentrations in the pituitary gland and urine of the adult ewe are also high. These elevated FSH levels in the adult are attributed to an ovarian feedback deficiency, probably because the inhibin content of the Booroola ovary is only one-third that of normal Merino ovaries. The low inhibin content appears to be due to Booroola follicles having significantly fewer granulosa cells than control Merinos. Analogous studies of the prolific D'man sheep of Morocco point to FSH as the main correlate of prolificacy. The testis growth rate, testis size and total daily production of spermatozoa of the Booroola ram are similar to those of normal Merinos, as also are the endocrine characteristics of adult rams. The Booroola gene's expression is evidently sex-limited. Several theories concerning the mode of action of the F gene are being tested.  相似文献   

9.
In the male rabbit, LH and testosterone are secreted as 4–6 discrete pulses per day. The testosterone response to LH is rapid. The testosterone data did not show a normal distribution, but the same data expressed logarithmically were more nearly so. There was no evidence of a 24 h cycle in plasma testosterone levels.  相似文献   

10.
In a study of hormone secretion patterns in rams remote sampling techniques were utilized for collecting jugular blood samples each 20 min for 24 h from adult Romney rams. Five animals were sampled during the summer, four during the winter, and plasma LH, testosterone and prolactin levels were estimated by specific radioimmunoassays.  相似文献   

11.
Plasma LH, FSH and testosterone concentrations were measured by radioimmunoassays in male crossbred Merino/Corriedale sheep from birth to 45 weeks of age. FSH levels were 11 and 22 ng/ml at birth, increased to peak levels (mean value of 47 ng/ml) at 5 weeks and fluctuated between 25 and 35 ng/ml for the next 40 weeks. Similarly, LH (less than 0-5 ng/ml) and testosterone (less than 38 ng/100 ml) levels were low at birth and were significantly elevated by 5 weeks of age. LH values varied betwen 0-9 and 3-0 ng/ml for the next 30 weeks and then a secondary rise occurred reaching levels of 2-4 ng/ml by the 41st week after birth. Concentrations of LH subsequently fell to levels observed in adult rams. Testosterone levels rose gradually between the 5th and the 25th week, and then increased rapidly to values of 270-517 ng/100 ml by the 41st week after birth, a time coincident with the peak LH levels. Histological examination of testicular biopsies demonstrated that Sertoli cell maturation occurred 17-21 weeks after birth and was followed by activation of spermatogenesis leading to the presence of spermatozoa in the seminiferous epithelium by 39-42 weeks of age.  相似文献   

12.
Three adult Finn cross rams were bled at 30-min intervals for 7 h in March, May–June, August and November, and again at hourly intervals for 2 h after an intravenous injection of 50 μg of a GnRH analogue. Plasma testosterone concentrations were measured by radioimmunoassay. The mean testosterone level from 15 blood samples for each ram was highest in November and lowest in March. The episodic pulse pattern of testosterone secretion during the 7-h blood sampling periods was most evident, and more similar among rams in August and November, and less so in March and May.The mean testosterone concentration from the blood samples collected 1 and 2 h after GnRH injection was significantly higher in August–November than in March–June, but the ratio of the testosterone level after to that before injection was highest in March and lowest in November.  相似文献   

13.
Two experiments were conducted to examine the effects of mouse epidermal growth factor (EGF) on the concentrations of testosterone, LH and FSH in jugular blood plasma and on the pituitary responsiveness to LHRH. In 20 rams treated with subcutaneous doses of EGF at rates of 85, 98 or 113 micrograms/kg fleece-free body weight, mean plasma LH and testosterone concentrations were significantly reduced (P less than 0.05) at 6 h after treatment but not at 24 h. EGF treatment at 130 micrograms/kg fleece-free body weight suppressed the plasma content of these hormones for up to 48 h. Mean plasma FSH concentrations decreased significantly (P less than 0.05) for up to 48 h after EGF treatment, the effect being most pronounced in rams with mean pretreatment FSH values greater than or equal to 0.5 ng/ml. Intravenous injections of 1.0 micrograms LHRH given to each of 5 rams before and at 6 h, 24 h and 72 h after EGF treatment produced LH and testosterone release patterns which paralleled those obtained in 5 control rams similarly treated with LHRH. These results suggest that, in rams, depilatory doses of mouse EGF temporarily impair gonadotrophin and androgen secretion by inhibiting LHRH release from the hypothalamus. Such treatment appears to have no effect on the responsiveness of the pituitary to LHRH.  相似文献   

14.
The fertility enhancing effects of semen were examined following the intra-uterine insemination of killed spermatozoa plus seminal plasma 17 d prior to insemination with viable spermatozoa. Three experiments were conducted: two on 1.5-yr old and 2.5 to 5.5 yr-old Booroola Merino x South Australian Merino ewes in 1986 and one on 1.5 yr-old ewes in 1987. Differences between treatment and control groups for the percentage of ewes exhibiting estrus by Days 21 and 35 following fertile insemination, the percentage of ewes with viable embryos at Day 35, the number and weight of viable embryos per ewe, the nubmer of caruncular implantation sites and the progesterone level were not statistically significant (P>0.05). There were no statistically significant treatment by experiment interactions for any of the variables examined. Inflammation and edema of the endometrial tissue was not observed following the presensitization treatment.  相似文献   

15.
The goal of the present study was to determine whether ACTH and progesterone have any effect on LH secretion and pulse frequency in recently castrated rams. Six 2-year-old Corriedale rams were castrated in the winter. The day before castration, blood samples were taken in order to establish the precastration LH levels. The rams were divided into an untreated group (group U: n = 2) and a treated group (group T: n = 4). The first treatment consisted of the i.v. administration of 0.5 mg of ACTH on day 20 post-castration, immediately after the first sample had been taken. During the second treatment, subcutaneous progesterone implants were given to group T for 5 days. Control samplings were performed one week before each treatment. Prior to castration, the testosterone levels were low, while after castration they were below the detection limit of the assay. Cortisol and progesterone concentrations were basal before castration in all of the animals and after castration in group U and also in the control samplings for group T. ACTH treatment caused a significant increase in both cortisol and progesterone levels for 3 h (P < 0.001). Progesterone implants raised progesterone levels in group T, but cortisol levels remained basal. Before castration, all animals had low LH levels and hardly any pulse activity was seen. After castration, both the number of LH pulses and the mean LH production increased significantly in all of the animals (P < 0.01). During the ACTH trial, LH pulse frequency was significantly reduced for the first 4 h following ACTH administration (P = 0.013), however, no such differences occurred in the prior control period. No effect was seen on mean LH concentration during the ACTH treatment. Progesterone treatment did not have any effect on either the number of LH pulses nor on LH concentrations (P > 0.05).  相似文献   

16.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

17.
Before castration, the mean plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not differ between FF and ++ Booroola rams. After castration, mean LH and FSH concentrations increased after 8 h, and for the next 14 days the rate of increase in FSH, but not LH, secretion was significantly faster in FF than in ++ rams (P less than 0.05). Mean FSH concentrations over this period were significantly higher in FF than in ++ rams (P less than 0.05). In both genotypes, the ranked FSH values did not significantly change their order over time, i.e. a significant within-ram effect was noted (P less than 0.05). Repeated-measures analysis of variance indicated a significant effect of genotype on mean FSH secretion (P less than 0.05) and a significant effect of sire in the FF (P less than 0.05), but not the ++ (P = 0.76), genotype. From Day 28 to Day 58 after castration, FSH and LH concentrations were variable and no overall increases in concentrations were observed. The mean concentrations of both hormones over this period were not related to genotype. There were no gene-specific differences in pulsatile LH secretion 14 weeks after castration. However, the mean LH, but not FSH, response to a bolus injection of 25 micrograms of gonadotrophin-releasing hormone (GnRH) was significantly higher in FF than in ++ rams (P less than 0.05) and this was not significantly affected by sire. These studies support the hypothesis that the F gene is expressed in adult rams, in terms of pituitary responsiveness to an injection of GnRH and to the removal of the testes, but it is not clear from this study whether the influence of sire is related to or independent of the apparent gene-specific differences.  相似文献   

18.
Testes from rats, mice and hamsters were incubated for 4 h with 0, 3.125 or 12.5 mIU hCG/ml. The LH receptor concentration in incubated testes of rats and mice was higher than that observed in hamsters. Testosterone levels in incubation media were significantly different among species (mice greater than rats greater than hamsters). During the incubation, hCG caused an increase in testosterone levels in all three species, but produced no significant changes in LH receptor concentration. Furthermore, a correlation between LH receptor concentration and testosterone only in hamsters is observed. The efficiency of the LH receptor-steroidogenesis interaction was estimated from the ratio of testosterone levels to receptor concentration under basal conditions and was found to differ among species (mice greater than hamster greater than rats). The levels of PGE and PGF in incubation media were higher in mice than in rats or hamsters, and hCG did not alter prostaglandin levels in any of the species. The present results indicate that acute in vitro hCG stimulation of testosterone synthesis does not involve appreciable changes in testicular LH receptor levels.  相似文献   

19.
The effects of Booroola genotype (F+, ++); the number of ovulations per ewe (one, two or three); and the age of a ewe (2.5 yr vs 3.5 to 6.5 yr) on the percentage of ova fertilized, embryo loss and fetal loss were examined in Booroola x South Australian Merino ewes slaughtered on Days 4, 21 and 90 after insemination. Ewes slaughtered on Day 90 were examined by real-time ultrasound imaging (RUI) on Day 45. Fertilization failure was independent of ewe genotype, ovulation rate and age of ewe, and it was not an important source of wastage (F+, 9.4%; ++, 6.7%). Most embryo loss occurred during the first 21 d (F+, 54.7%; ++, 40.3%). Interpretation of the effects of genotype and ovulation rate on embryo wastage measured on Days 21, 45 and 90 was obscured by significant (P < 0.05) genotype and ovulation rate interactions with the day of slaughter/RUI. The effect of age on embryo loss was not significant (P > 0.05). Reasons for the high rate of wastage observed in this experiment require further study.  相似文献   

20.
We examined the effect of restraint stress (3 hr) on plasma LH and testosterone levels, on the Leydig cell LH/hCG receptor, and on the activity of enzymes in the testicular steroidogenic pathway of the adult rat. Restraint stress caused a 47% reduction in plasma testosterone concentrations, but had no effect on plasma LH levels. The binding capacity and affinity of Leydig cell LH/hCG receptors were not affected by restraint. Stress did not affect the testicular activity of 20,22 desmolase or 3 beta-hydroxysteroid dehydrogenase, but testicular interstitial cells of stressed rats incubated in vitro with progesterone as a substrate produced more 17 alpha-hydroxyprogesterone but less testosterone than control cells, and when incubated with 17 alpha-hydroxypregnenolone, produced 39% less androstenedione and 40% less testosterone than control cells. These results suggest that restraint stress inhibited 17,20 desmolase but not 17 alpha-hydroxylase activity. When the delta 4 pathway was blocked with cyanoketone (3 beta-HSD inhibitor), stress did not alter the production of pregnenolone or 17 alpha-hydroxypregnenolone, but the production of dehydroepiandrosterone by cells from stressed rats was subnormal, suggesting again a reduction of 17,20 desmolase activity. The data suggest that a major site of the inhibitory action of restraint stress on testicular steroidogenesis is the 17,20 desmolase step. The disruption of androgen production by restraint appears to be LH independent since stress did not affect plasma LH levels, the binding capacity or affinity of LH/hCG receptors, or the activity of 20,22 desmolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号